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We compute the distribution of the decay rates of the eigenstates in a random laser from a numer-
ical model. From the results of the numerical simulations, we are able to find simple analytical
formulae that describe those results well. We use the decay rates to calculate the lasing threshold
of random lasers. In addition, we analyse the influence of spatial correlations.

We compute the lasing threshold via the eigenmodes
and eigenvalues of the Hamiltonian. The real part of
the eigenvalue gives the eigenfrequency, the imaginary
part gives the decay rate.

By generating thousands of samples with different
realisation of the disorder, a histogram of the decay
rates is computed. The histograms for different system
parameters are fitted to functional forms.

We analysed the fitting parameters as a function of the
system parameters and were able to find simple relations.
In this way, we arrive at explicite expressions for the
decay rate distribution for arbitrary system parameters.

The Anderson Hamiltonian models transport by nearest-neighbour
hopping with rate 1. On each lattice site, there is a spatially varying
potential. The outcoupling at both ends of the sample is described by
an imaginary term. The sample length is L , the sample width is N .
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)
A disordered medium is modelled by assigning random values to
P(x , y).

In the theory of disordered media, two important regimes are
distinguished.

• In the diffusive regime, eigenstates are extended and
efficient transport is possible. A sample is diffusive for
weak disorder and/or short sample length.

• In the localised regime, eigenstates falls off exponen-
tially in space and transport is strongly inhibited. Sam-
ples are localised if the disorder is strong.

In the following, we will discuss these two regimes separately
as they differ in many aspects.

Having computed the numerical histograms of the decay rate distributions for the individual modes, we fit them to some educated guesses for the shape of the distribution functions. We need to distinguish
between the diffusive and the localised regimes.
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Eigenstates are extended also in chaotic cavities.
For the diffusive regime we thus start from the
known decay rate distribution for chaotic cavities
and rescale it:

P(γ ) ∝ 1

γ 2

[
1− �(M +1, Mγ /γ0)

�(M +1)

]

(For a chaotic cavity, M gives the size of the
opening of the cavity.)

A large number of random contributions are
superimposed in a disordered medium, usually
resulting in normal (=Gaussian) distributions.
Since in the localised regime all eigenstates fall
off exponentially, this rather yields a log-normal
distribution:

P(γ ) ∝ exp
[
− (logγ − logγ0)2

σ 2

]
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As the two figures above show, the numerically computed histograms follow the analytic forms well. The parameter γ0 gives the typical decay rate, for both the diffusive regime and the localised regime.
The width (and shape) is determined by M and σ , respectively. The dependence of γ0, M and σ on the system parameters are:
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The numerically computed values for γ0, M and σ are well described by the following analytic expressions (shown as dashed lines above), depending only on the sample length L , the sample width N and
the mean free path l.

γ0 = 2cl

L2
M = N

1+ L/(6l)
σ = 2

3

(
2L

[N +1]al

)2/3

γ0 = a

N 2
exp

(
− 2L

[N +1]al

)
with a = 1.12 .

An eigenmode starts to lase if photons in it escape (=decay) more
slowly than they are replenished by pumping. The lasing threshold
is thus given by the smallest decay rate of all eigenmodes.
The distribution of the smallest element γL out of a set of K ran-
dom values can be computed from the distribution P(γ ) determined
above. The most likely lasing threshold γL follows from

0 = d P(γL)

dγL

[
1−

∫ γL

0
P(γ ′)dγ ′

]
− (K −1)[P(γL)]2 .

The solutions of this equation are depicted on the right, for P(γ )
both from the diffusive and localised regime. (The properties of the
laser dye enter via the quantity f , K = f N L/�. The numbers x on
the lines mean 10x .)
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The lasing threshold γL is dominated by the typical decay rate γ0.
The small-γ tail of P(γ ) does not contain enough weight to allow
a lasing threshold that is significantly smaller than γ0 (unless K
becomes exponentially large).

This means that for the diffusive regime, the lasing threshold is
basically determined by the length of the sample alone whereas in
the localised regime both the length and the width of the sample are
important.

Localised samples offer the advantage of a smaller decay rate at
given length but must be limited in width, making an experimental
realisation more difficult. Diffusive samples, on the other hand, can
be made very long since their width does not need to be restricted.

Many experimental results suggest that the lasing
mode is localised while a direct experimental
analysis of the sample shows that it is in the
diffusive regime. It seems that there can be a
few localised modes (which become the lasing
modes) in an otherwise diffusive sample.

Only one explanation has been offered so far. It
was suggested that localised modes could be cre-
ated and the decay rates be decreased if the poten-
tial P(x , y) becomes spatially correlated within
some correlation radius Rc.
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As the figure on the left shows, the typical decay
rate increases as the correlation radius Rc is
increased. The behaviour of the average mode
thus is opposite to the prediction.

The figure on the right shows the computed lasing
threshold. In contrast to the figure on the left,
these data describe a special mode with lower-
than-average decay rate, namely the lasing mode.
Also here, an increase of the rate is seen when
spatial correlations are introduced. No indication
for the formation of localised modes is found.
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