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We theoretically investigate vertical high-field transport in semiconductor superlattices, which exhibit
self-generated current oscillations and the formation of stable stationary electric field domains depend-
ing on the available carrier density. We demonstrate that this behavior is strongly affected by growth-
related imperfections like fluctuations of the doping density, the well and the barrier widths. We pro-
pose to use this as a novel noninvasive method to detect growth-related disorder in superlattices.

INTRODUCTION

We consider a semiconductor superlattice where electric field domains form in the growth direction
under high-field conditions if the superlattice is sufficiently doped or optically excited1–4. Previous
studies have shown that the current-voltage characteristic consists of a sequence of branches (their
number being roughly equal to the number of quantum wells), which arise from different locations of
the domain boundary. These branches overlap in a certain range of the voltage, leading to multistability
and different curves for sweep-up and sweep-down of the voltage5. Recently, time-dependent features
like transient6 and persistent7 oscillations have also been observed and reproduced by different models
of structurally “perfect” superlattices8;9.

The model used here is an extension of the approach presented in Refs.10;8 for a “perfect” super-
lattice consisting of N GaAs quantum wells separated by N � 1 AlAs barriers. Here we study im-
perfections associated with frozen-in fluctuations of the doping and the well and barrier widths in the
growth direction only. We denote by bi the width of the ith barrier, which is located between the ith

and (i� 1)st well of widths li and li�1, respectively. The wells are n-doped with a doping concentra-

tion (per unit volume) N (i)
D in the ith well. We define a “local” lattice constant di := bi+(li+ li�1)=2

to describe the vertical transport across the ith barrier. For simplicity we consider only the two lowest
subbands, k = 1; 2. The rate of change of the carrier densities n(i)k (per unit area) in the kth subband
of the ith well is given by
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where �21 = 1 ps is the intersubband relaxation time, R(i)
k is the rate of electrons crossing the ith

barrier between equivalent subbandsk of two neighbouring wells modelled by miniband conduction10.
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The tunnelling coefficients X(i)
r , X(i)

l , Y (i)
r , and Y

(i)
l for transitions between different subbands of

neighbouring wells depend on the field F (i); the subscripts r and l denote resonant tunnelling to the
right and left, respectively. X stands for transitions from the first to the second subband, and Y for
the reverse process. They are calculated from perturbation theory10, but using local energy levels and
barrier widths. X(i)

r and Y
(i)
l exhibit a distinct maximum for large electric fields where the first and

the second subband of adjacent wells are in resonance. The electric field F (i) can be calculated from
Poisson’s law �(F (i+1)

� F (i)) = e(n
(i)
1 + n

(i)
2 � liN

(i)
D ), where � is the permittivity of GaAs. The

fields have to satisfy
PN+1

i=1 diF
(i) = U , where U is the voltage applied to the sample. The sample

contacts are treated as two additional “virtual” wells denoted by 0 and N +1, for which the boundary
conditions n(0)i = n

(1)
i and n(N+1)

i = n
(N)
i are assumed.

SIMULATIONS

For uniform electric fields the current-voltage characteristic following from (1), (2) exhibits a two-
peak-structure with a sharp maximum due to resonant tunneling. However, this characteristic with
a regime of negative differential conductivity (NDC) is stable only at low doping. At higher dop-
ing, spatio-temporal instabilities lead to self-oscillations of the current associated with the build-up of
space-charges8;11. At the highest doping densities, the number of available carriers is sufficient to pro-
vide the space charge necessary to form a stable boundary between a low-field and a high-field domain.
Stationary domains are then found. This behavior is summarized in Fig. 1 for a “perfect” superlattice.
The inset depicts a bifurcation scenario for fixed ND where limit cycle oscillations are generated from
the inhomogeneous branch by a supercritical Hopf bifurcation Hsuper . The amplitude of the current
oscillations is indicated by the hatched area. There is a small regime of bistability between the inho-
mogeneous steady state and the oscillations beyond the subcritical Hopf bifurcation Hsub. T denotes
transcritical bifurcations of various steady states. Fig. 2 (a) shows the periodic oscillations for interme-
diate doping. The homogeneous field distribution breaks up into a low- and a high-field domain. The
latter shrinks while at the same time its field grows rapidly forming a steep but unstable domain wall.
This leads to a sharp rise of the current. When the current has reached a certain value the high-field do-
main collapses, resulting in the original quasi-homogeneous field distribution. This process is repeated
periodically. When a small amount of doping fluctuations is introduced (Fig. 2 (b)) the spatially homo-
geneous phase of the field distribution decreases resulting in more sinusoidal oscillations of the current
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Figure 1: (left) Phase diagram of spatio-temporal instabilities as a function of doping density ND and bias
voltage U for a perfect superlattice of N = 40 periods of GaAs/AlAs layers with l = 90 Å, b = 15 Å. The
inset shows a bifurcation scenario for fixed ND = 2 � 1016 cm�3 (full lines: stable steady states, dotted lines:
unstable steady states, hatched area: limit cycle oscillations)

Figure 2: (right) Self-oscillations with ND = 3 � 1016 cm�3 at U = 1 V (a) for a perfect superlattice, (b) for
doping fluctuations of � = 0:1%, (c) for � = 3%, where N (i)

D
= ND(1+�ei) with a random set of N values ei

from the interval [�1; 1]. The current density j versus time t and the evolution of the field distribution F (x; t)
are shown.
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Figure 3: Current density j vs. voltage U for ND = 6:7 � 1017 cm�3 and doping fluctuations of � = 3%. Both
stable (full) and unstable (dashed) domain states are shown. The inset depicts the current-voltage characteristics
for uniform fields.

and a higher frequency. For larger fluctuations (Fig. 2 (c)) the homogeneous part vanishes completely,
since the presence of irregularities supports the formation of charge accumulations. Furthermore, at
doping concentrationsND for which the perfect superlattice would exhibit damped oscillations which
asymptotically tend to a stable domain field distribution, we find persistent self-generated oscillations
above a certain threshold of disorder. The actual shape of the boundary between both regimes, how-
ever, depends sensitively on the individual sequence of the irregularities. It is even possible that a
sample with a particular spatial sequence of fluctuations shows stable domains, while the inverted se-
quence (corresponding to reversed bias) leads to self-oscillations.

In Fig. 3 the current-voltage characteristic is shown at a higher mean doping density where stable
stationary high-field domains form at the anode in the NDC regime (cf. inset). In contrast to earlier
work we have displayed here the full connected current-voltage characteristic. Along the characteris-
tic stable and unstable parts alternate. They correspond to a continuous shift of the domain boundary
across the superlattice from the anode (i = N ) to the cathode (i = 1) with on average increasing bias.
On the ith stable part (with rising voltage) the domain boundary is pinned at the (N � i)th well, while
along the unstable parts (with falling voltage) the boundary is shifted to the next well. For neighbour-
ing stable branches the domain boundary is thus displaced by one superlattice period. The irregularly
varying length of the different branches is due to the doping fluctuations which determine the maxi-
mum and minimum current. Upon voltage sweep-up or sweep-down only parts of the stable branches
can be reached (Fig. 4 (a)). With increasing degree of disorder, the irregularities are enhanced, and
some stable branches are missed out altogether, as a result of their reduced length. The characteris-
tics are in good agreement with the experiments5 and allow even an estimate of the range of doping
fluctuations between 3–10%.

In Fig. 4 (b) monolayer fluctuations of well and barrier widths are studied. In (�) the 18th well is
chosen to be larger by one monolayer, while in (�) two wells are larger (the 11th and the 32nd), and two
wells are smaller (the 12th and the 18th) by one monolayer. In () there are four larger and four smaller
wells. Finally, in (�) the 31st barrier is wider by one monolayer. For increasing disorder (�)–(), we
find the sequence of branches to exhibit a more and more irregular behavior. When only a small number
of irregularities is present, it is even possible to determine their location within the superlattice struc-
ture. When at higher voltages a high-field domain forms near the anode (well no. 40) its influence
becomes visible in the current-voltage characteristic only if the domain boundary crosses the barriers
close to the perturbation. In this case the transition of the associated charge accumulation layer from
one well into the next one occurs at a smaller or a larger applied voltage compared to the case of the
perfect superlattice. This results in an extension or reduction, respectively, of the length of that current
branch. It is thus possible to determine the location of a single irregularity of the well width from the
current-voltage characteristic by enumerating the branches. (Fig. 4 (b)). If two perturbations are well
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Figure 4: (a) Current-voltage characteristics for voltage sweep-up and sweep-down with different doping fluc-
tuations. (b) Voltage sweep-up with different imperfections of wells and barriers. (ND = 6:7 � 1017 cm�3; the
vertical scale is shifted for each curve)

separated within the superlattice structure so that the regions where they affect the field distribution do
not overlap, their influences can still be distinguished. If the number of irregularities increases, their
interaction leads to a more complex behavior in the corresponding part of the current-voltage charac-
teristic (). The widths of the barriers can also severely affect the current-voltage characteristic, which
can be seen in (�) where the 31st barrier is wider by one monolayer. The voltage at which the domain
boundary crosses the perturbation (i. e. the location of the perturbation within the superlattice) can be
easily detected from the characteristic.

In conclusion, we propose to use macroscopic nonlinear transport properties far from equilibrium
as a novel, noninvasive method of probing growth-related disorder and imperfections in superlattices.
By simple global macroscopic electric measurements, in combination with model calculations,
microscopic structural features can thus be investigated.

We thank L. Bonilla, H. T. Grahn, and J. Kastrup for enlightening discussions. This work was
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