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We investigate the effects of frozen-in spatial fluctuations of the doping density on the different forms of
spatio-temporal pattern formation found in weakly-coupleejoped superlattices as described by a simple
microscopic model. For heavy doping, multistable field domains are observed, while for lower doping space
charge oscillations are found. The corresponding bifurcation scenarios are discussed. We demonstrate that there
occurs a qualitative change once the degree of disorder exceeds a certain threshold. For the case of moderate
disorder and heavy doping, a direct correlation between the peak current of each branch of the current-voltage
characteristic and the doping density in the corresponding quantum well is derived and applied to analyse a
measured characteristic.

I. INTRODUCTION 1, 2. The rate of change of the electron densities can then be
expressed &s

The formation of electric field domains in a semiconductor 0 ) i—1) (4D O ) D) 0
superlattice in the high-field regime was already predicted by Ny’ = Ry'ng = — Ry 77np" —n (X7 + X))

Esakl and_ Chanlgand v_erlﬂfd later for both doped and_ op- +n(2i+1)Yl(i+1) 4 ﬂ(zi_l)Yr(i) + n(zi)/r21 1)
tically excited superlattic€s®. These results were explained 0 -1 (4D () 0 o) 1
using different theoretical models’ Later, time-dependent ny = RY'ng Y — RYTVng) —ny (v + YD)
features like transiefand persistent current oscillations were +n(l|—1) Xr(i) + n(lu +1) X|(|+1) _ ng)/ml )

also found both in simulatiofi$® and experimentalf{®. Re-
cently, the agreement of simulations with experimental results

. . . . i)
was considerably improved by taking into account growth-wheretﬂ is the intersubband relaxation timg, ’ is the tran-

related disorder and structural imperfectidAgé sition probability per unit time for electrons crossing it

For a structurally perfect superlattice general features op@rtier (located between th? and the(i +1)°' well) between
stationary field domaié and self-oscillationi$ have re- ~€duivalent subbandsof two adjacent wells and is modeled
cently been analyzed in terms of a simple, analyticallyPy @ Simple phenomenological approximatiSrThe coeffi-
tractable model. cients X/, X", Y andY,"’ for transitions between dif-

The purpose of the present paper is to gain a deeper uferent subbands of adjacent wells are determined by resonant
derstanding of the different nonlinear spatio-temporal mode§innelling and are calculated from quantum mechanical per-
and their sensitivity to the presence of growth-related dopingurbation theory. X stands for transitions from the first to the
fluctuations. We do this by presenting a comprehensive anafecond subband, and stands for the reverse process. The
ysis of bifurcation scenarios not only in dependence on biagubscripts andl denote resonant tunnelling to the right (to-
voltage and mean donor density but by taking the degree gfards the anode) and to the left (towards the cathode), re-
disorder into account as a third, equally important system paspectively. All transport coefficients depend strongly upon the
rameter. The different regimes of stationary multistable fielgelectric fieldF®) in the respective barrier.
domains and self-sustained oscillations are investigated in the For a realistic modeling of the measured current-voltage

framework of the microscopic model of Ref. 12. characteristics, spatial fluctuations of the structural parame-
The Supeﬂattices discussed in this paper consist @p_ ters, i. e., the widths Of the ba_rriebs,and the _quantum wells,
ically 40) GaAs quantum wells of widthseparated byt —1 |, as well as the doping densityp, must be included. Fluc-

AlAs barriers of widthb. The values used in the simulation tuations of these three quantities have already been examined
are summarized in Tab. I. The wells are n-doped with an avin Refs214, where it was inferred from a comparison with
erage doping density (per unit volumi). Due to the rel-

atively wide barriers considered, the coupling between dif-tag| £ .

ferent quantum wells is weak, and thus each electron is ef Parameters of the superlattices used in the simulations.

fectively localized in a quantum well. Charge transport thenWidth of GaAs quantum wells b = 904
occurs mainly through sequential tunnelling between adjacerf/idth of AlAs barriers ' = 15A
wells. Number of quantum wells N = 40
We use the electron concentrations (per unit area) in th&€lative permittivity of GaAs w B 132
th level of thath ntum welin® the dvnami Intersubband relaxation time ™21 = 1ps
energy level ol the ™ quantum welln, -, as the dynamiC | yyice temperature T = 5K

variables of our system. For moderate applied voltages, We ,quction band discontinuity Vo
can restrict ourselves to the two lowest energy levielss:

= 982 meV




experiment that doping fluctuations are the most likely form
of microscopic disorder responsible for the irregular shapes of
measured current-voltage characteristics.

To model doping fluctuations, we introduce local donor
densities,NS’ = (1+«e®) Np in theith quantum well,
which are distributed around a mean valNg and parame-
terized by a random sequenceMfvalues{e"’} and a scaling
parameterx which quantifies the degree of disorder without
changing the individual random sequence. For the computa-
tions presented in this paper, we cho¢e®'} to be equidis-
tributed in the interval 1, 1] but the concept is easily ex-

Np [cm'3]

tended to more general distributions. 1015 ! ! ! !
The fields are related to the electron densities and the dop- 0 1 2 3 4 5
ing densities by the discrete version of Gauss’ law, U V]
(i+1) 0 0 ) ) _ FIG. 1. Phase diagram of spz?ltio-temp_oral instabilities as a func-
€ (F -F ) = e(nl +ny” —INp ) ) (3)  tion of external voltagd) and doping densitip for a “perfect” su-

perlattice. Saddle-node bifurcations are marked by solid lines, Hopf

wheree is the permittivity of GaAs. The total voltage drop ¢ avione by dashed lines and cusp points as trianggs (

across the superlattice must be equal to the external vdltage
applied to the sample:

i Il. BIFURCATION SCENARIOS OF SPATIO-TEMPORAL
Z (+bF=U, (4) PATTERNS
1

which .rep.resents a global coupling condition for the electron |, order to gain insight into the general features of the
densities in the system. . __spatio-temporal scenarios, we shall first briefly review the
Tbe sample contacts are treated as two additional *Virgase of a structurally perfect sample. The different regimes
tual” quantum wells denoted by = 0 andi = N +1, 4 spatio-temporal behavior found from our simulations are
in which the electron densities are fixed! = 2Np and  summarized in the phase diagram of Fig. 1. The current-
n(2'> = 0. Thus, we use Dirichlet boundary conditions mod-Vvoltage characteristics corresponding to cross-sections for dif-
eling Ohmic contacts as a carrier reservoir created by heaverent fixedNp are depicted in Fig. 2.
ily doped boundary layers. Different boundary conditions, The spatially homogeneousN-shaped current-voltage
nf(o) _ nf(l) and nl((N“) _ ”|(<N)' which can be conceived as Characteristic is stable only at low doping (Fig. 2a). For higher
a discrete form of Neumann boundary conditions, have beefloPing, a smeared-out domain-like field distribution forms,
discussed previousfy!213 an_d a blst_abl_ez-shaped cur_r_ent—voltage characteristic arises
The total current density across tH8 barrier, composed (Fig. 2_b), |nd_|cat|ng a transition between a smeared-out field
of the conduction and the displacement current densities, idomain for high current and lower voltage, and an almost ho-

given by mogeneous field distribution for low current and higher volt-
, , . ) . _ age. The positions of saddle-node bifurcation points where a
j=e- [ng’l) . (R&') + Xr(')> + ng’l) . (Rg) + Yr(')> stable and an unstable steady state merge are indicated by di-
L L D amonds; they form two lines in the lower part of the phase di-
—n$>x|('> - ng)\q(')] +€eFO, (5) agramin Fig. 1. At a minimum value ®Mp the two lines end

n in a cusp point where th¢(U)-characteristic changes from
and does not depend on the specific quantum well ”UmbeN-shaped tZ-shaped.
i.20 i . , At higher doping, spatio-temporal instabilities lead to self-
_ Let us first discuss the case of a homogeneous stationagenerated current oscillations associated with the build-up of
field distribution throughout the superlattl_ce _(negle_ctlng d's'space chargesHere, the current-voltage characteristic con-
order and boundary effects). By (3), this is equivalent t0y,ins 4 regime of limit cycle oscillations (Fig. 2¢). This regime
the absence of any charge accumulation or depletion, i.§s confined by supercritical Hopf bifurcation points, marked as
ny’+n5’ = Np. Thus, the electric field is fixed by the applied a closed dashed line in Fig. 1. Note that subcritical Hopf bifur-
voltageU, FO = U/ (N - (I + b)), and one can determine cations can be observed for different boundary conditidns.
the current-voltage characteristic from (5) taken at the steady A typical oscillation is depicted in Fig. 3. The field pro-
state. The macroscopiqU )-characteristic is then related to file in Fig. 3a shows that an inhomogeneous field distribution
the local drift velocityv(F) by settingj (U) = ev(F)Np.® forms and moves towards the anode. The charge accumulation
Both characteristics exhibit two distinct maxima,; the first peakassociated with it (Fig. 3b) grows in order to fulfill the global
is associated with miniband conduction, the second one isoupling condition (4), and eventually, near the anode, van-
caused by resonant tunnelling between different energy levishes. Then the whole cycle is repeatédhe corresponding
els in adjacent wells. Beyond the first peak, there is a regimescillation of the current density,, is almost perfectly sin-
of negative differential conductivity (NDC). usoidal. The oscillation exhibits a square-root dependence of
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FIG. 2. Current-voltage characteristics for doping densitigg)plp = 3.2- 1015 cm™3, (b) Np = 1018 cm™3, (¢) Np = 7- 1018 cm 3,
(d) Np = 10 cm=3, (e) Np = 2-107 cm—3, (f) Np = 7.9-10L” cm3. In all current-voltage characteristics presented in this paper, stable
stationary states are marked as solid lines, unstable ones as dashed lines, saddle-node bifurcation points as-ylmmaddddpf(bifurcation
points as crossesH). Oscillations are indicated by shaded areas within minimum and maximum current density. The insets show enlarge
sections of the respective current-voltage characteristics.

the amplitude upon the distance from the bifurcation point asained for fixedJ and variableNp . Over the entire oscillatory
shown in the inset of Fig. 3c for fixedp and increasindy. regime, the frequency varies by approximately 25 % similar to
The frequency is not affected by this bifurcation and is de-whatis seen in Ref. 18 for corresponding boundary conditions
termined near the bifurcation point by the imaginary part of(cf. the inset of Fig. 13b therein). The frequencies calculated
the corresponding eigenvalue (Fig. 3c). Similar results are olthere, however, depend strongly on the choice of boundary
conditionn@ = (1 + ¢)Np parametrized bg. The values of

c used throughout most of Ref. 18 are very small and thus dif-
ferent from our model which assumes heavily doped boundary
layers. Therefore most of the results presented in Ref. 18 can
not directly be compared with our results. However, for Neu-
mann boundary conditions we have also found frequencies
strongly varying with voltage and decreasing monotonically
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almost down to zerd as in the model of Ref. 18. This is con-
sistent with the results found in Ref. 18, since both types of
boundary conditions allow for an (almost) homogeneous field
distribution as a stationary solution, in contrast to the heavily
doped boundary layer conditions used in the present paper.
The dynamics is fast in the directions orthogonal to the cen-
ter manifold (see, e.g., Ref. 22), in which the limit cycle as

0.0 x 1.0 r r well as the corresponding unstable fixed point are embedded
0.0 05 1.0 1.5 2.0 1.0 15 20 25 (Fig. 3d).
U V] @ I Np Note that in contrast to the formation of stationary field do-

FIG. 3. Limit cycle oscillation Np = 5- 106 cm™3). (a) Tem- ~ Mains, the superlattice must contain a minimum number of
poral evolution of the field profil&, (b) Temporal evolution of the quantum wells to enable oscillatioh.In addition to such
charge densityp (U = 1 V). (c) Frequency of the oscillation versus charge oscillations of a single domain boundary, at higher
U (solid line). The frequency corresponding to the imaginary part ofdoping levels traveling high-field domains embedded between
the largest eigenvalue is shown as a dashed line. The inset depidiwo low-field domains are found if the model is extended to
the amplitude of the current densify(in kA/cm?) versusU (in V) accommodate highly doped boundary layers adjacent to the
near one of the Hopf bifurcation points-). (d) Phase portrait Gﬁ:fo contacts. Thus current oscillations may also occur at larger
versus.n%9 (+: unstable fixed-point, solid line: limit cycle, dashed doping.
line: trajectory lying in the center manifold, dotted line: trajectory  Atthe highest doping densities, the number of available car-
starting outside the center manifold; the other trajectories start neaiers is sufficient to provide the space charge necessary to form
the limit cycle). a stable, stationary boundary between a low-field and a high-



F [V/m] seen in the inset of Fig. 2e. The overall behavior shown in
Fig. 2 for the structurally perfect model is similar to the one

10’ found in simple phenomenological modéls®
6010°
6 15 lll. EFFECTS OF DOPING FLUCTUATIONS ON FIELD
2010 101610 DOMAINS
40" 30 20 18 - o -
10 10 N [cm'3] In the next two sections we will discuss how doping fluctu-
D ations affect the spatio-temporal patterns, i. e., the formation

FIG. 4. Fieldvp\nlrgMenac')s'a function of the doping denshl,, for ~ of multistable field domains and limit cycle oscillations. First,
fixedU = 1V. we focus on field domains.

Fig. 5 shows how the current-voltage characteristic changes
in the regime of domain formation if the donor density in a sin-
gle quantum well is either increased (b) or decreased (c) with
0r'espect to the unperturbed case (a). It is evident that there
"bxists a direct correlation between the local doping density

in the k'™ well and the peak current of thé& -+ 1)!" branch
the current-voltage characteristic (counting from the right)

field domain (cf. Fig. 4). The build-up of a charge accumula-
tion and the subsequent nucleation of field domains is a pr
cess of self-organized pattern formation, which is common i
semiconductors with negative differential conductivty?®
However, there are essential differences compared, e.g.,
the classical Gunn domain instability, which is associated wit orresponding to the location of the domain boundary at the
a traveling triangular domain. For its existence it is required(

- S . k + 1)'" well. One can even infer quantitative information
only that thev (F)-characteristic has one rising and one fa”'ng about the local doping density from the peak currents, i. e., the

branch. In the superlattlce_, the high- and low-field domaing, jsions of the saddle-node bifurcations which mark the end
corre_spond to spathl _coeX|stence of two stable state_s of t a stable branch. Itis shown analytically in the appendix un-
local j (F)-characteristic at the same current G!eng?twhlle der some simplifying assumptions that the maximum current
Fhe Gunn domains have a triangular field prpflle Whose maxteached on a particular stable branch is proportional to the
imum does not attain a second stable S%é@ﬁ%;ezgt equal doping density in the quantum well next to the well at which

area rules have been derived for both cd$és:2"2% If the the domain boundary is located. This opens up the possibil-

doping density is sufficiently high, the width of the domain . . (i) .
boundary is of the order of the superlattice period. In this caséty to determine the local values of the rathy,”/Np with

the domain boundary is localized in a specific quantum weIFjOOd precision from m_easured cu_rrent—voltage chara_cteristics
and, in contrast to the Gunn diode, cannot move continuouslgnd thereby characterize the qualily of a sample. This proce-

through the sample but can only jump from one quantum wel ure has _begn tgsted by app'y".‘g it to ”“mggca”y simulated
to the next. As a result, there exist different stable stati0n—(:hl"’tlrr‘?cte”lsucsbwIth random St?lplng ﬂllj.cgu?t' S | d
ary domain states (their number being approximately equal to as aiso been successiully appiied to several measure

the number of quantum wells) which arise from different lo- characteristics where it yields reasonable estimates of the de-

cations of the boundary. gree of disorder. The computed values of the relative variation

As the domain boundary is shifted from the anode to theli = (NB) - ND) /Np of the local doping density in thd"
cathode with increasing voltage, the current-voltage charagquantum well from the mean doping denshly are shown
teristic exhibits small modulations in the form of sequencesn Tab. Il. Thus, the current-voltage characteristic serves as
of N- (Fig. 2e) orZ-shaped (Fig. 2f) branches correspond-a direct “fingerprint” of the microscopic realization of doping
ing to different locations of the domain boundary as showrfluctuations. For quantum wells close to the cathode or anode,
experimentally® The different stable branches are connectedboundary effects become important, and therefore the respec-
by unstable parts as depicted in the insets. Thus the currertive quantum wells have not been included in the analysis. The
voltage characteristic consists of a single continuously con-
nected curve, along which stable and unstable parts alternate.
The changes of stability are caused by saddle-node bifurca- 0 ) L h
tions, which show up as a complex pattern of intersectingi = (ND - ND>/ND of the doping density in the'" quantum
lines in the upper part of Fig. 1. This diagram allows onewell for the sample investigated in Ref. 29.

TABLE Il. Computed relative variations

to determine the positions of the individual current brancheg, = 759 5, = 59% 6, = 6.2% 55 = -59%
as well as, for given parametets and Np, the number of 5. = 10% s, = 10% 85 = 93% s = 27%
multistable states. The two lines of saddle-node bifurcation;; = 7.19% s;; = 12.0% 8;, = 14.0% 8,3 = 3.0%
points belonging to a particular unstable branch merge in 3,, = 2.8% 815 = 1.4% 816 = -6.6% 817 = -14.6%
cusp point. Thus, the associated valuéNgf is the minimum 5,5 = -7.0% 819 = -6.9% 89 = -83% 81 = -1.9%
doping density necessary for multistability and hysteresis 0f,, = -2.1% 6853 = -4.9% 8y4 = -6.1% 85 = -5.2%
current branches. Since the cusp points lie at slightly differendog = -1.4% 657 = -46% Syg = 0.1% 89 = -2.3%
values ofNp, in the respective range &fp values hysteresis 8§30 = -1.2% 831 = 3.4% 832 = 1.7% é33 = 13.8%

may set on only above a certain threshold voltage as can be
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FIG. 5. Part of the current-voltage characteristics in the regime of domain formatiprn=7.9 - 107 cm_3). The doping density in the
20-th well is(b) increased by 10 %(c) decreased by 10 %. The unperturbed characteristic is display@l. iThe branches are numbered
according to the location of the domain boundary atktib well.

standard deviatiog/zi 8?/N of the doping density is.& % (main figure) this threshold. This qualitative change, marking
(corresponding to a value af = 10.8%) which is in good the transition between moderate and strong disorder, is caused

agreement with what is generally known about the pro ertie?y a pert_urbed transcriti(_:al k_)ifurcation (see, e.g., Ref. 31) as
o?the growth process 9 y prop schematically sketched in Fig. 9. For law(left) the unsta-
Even though the .full continuously connected current-Pl€ isola and the “standard” characteristic (stable and unsta-

voltage characteristic, consisting of alternating stable and ur*gle pranch) are separate. Al the_ tr_\reshold value_ ?‘fe”t?‘f)
stable branches, shows only slight changes if moderate disoﬁbe |so!a and the stable branch join at a transcritical bifurca-
der is introduced, the characteristic which is found under voIt-t'on. pomt.(_marked as a square) where two bf?T‘Ches. exchange
age sweep-up or sweep-down, may change qualitatively ingfheir stability. For larger values of the transcritical bifurca-
vidual branches are shifted and their lengths are changed afion point splits into two saddle-node points, thereby forming

cording to the doping densities in the corresponding quanturﬁ single connected characteristic into which the isola has been

wells; thus, some stable branches might be missed out Coansertgdl : - . .
If a is increased even further, additional isolas are inserted

pletely during voltage sweep-up or sweep-down if the dop- to th i h teristic: isol te off
ing densities in two adjacent quantum wells differ sufﬁciently.In o fe con |nu?us ¢ a;ac e(;'s 'Ci: S(:rr]ne ISolas separﬁ € Io
This is demonstrated in Fig. 6 by comparing voltage sweepf-igaln or even stronger disorder. Furthérmore, several 1Solas

up and sweep-down () with the full stable branches ()™ Comb.'”ebt‘? form a S!”g'e'.t?:‘t’r:e CO”IP'GX 'S‘I"a nasm
For a given degree of disordes, the effect of missed-out flar scenario betore merging wi € continuously connecte

branches is most pronounced at large doping or high voltag urrent-voltage char_a_cteristic, WhiCh. can _thus ir_morpo_rate a
A careful inspection of the saddle-node lines in the associla’9e number of additional branches in a single bifurcation.
ated phase diagram (Fig. 6¢) already allows one to determine
which branches are missed out for gividp .

Apart from the single continuously connected current-
voltage characteristic, there exist numerous other stationary
states, i. e., fixed points of the dynamic system (1), (2), most

of them being unstable. Some of them are depicted in Fig. 7a, | '€ Main effect of disorder in the regime of limit-cycle os-
for a superlattice without doping fluctuations. With the ex- Cillations is to shift and deform its location in parameter space.

ception of an additional peak, their field profiles are similar toF0r moderate disorder, it is determined by the location of the
those of states on the “standard” current-voltage characteri¢i@Pf Pifurcation points (Fig. 6c, dashed) as in the perfect su-

tic. Almost all such states form “isolas” (closed curves) in theP€rattice (Fig. 1). The change of the oscillation amplitude
j (U)-diagram. and frequency for fixed voltage and fixed donor density is only

We will now focus on a particular class of isolas: a typical SIgNt: , , _
member is depicted in Figs. 7b (thin dashed line) and 7c. The The effects of an increase (decrease) of the doping density

field profile displays an additional, smaller peak in the low-" @ Single quantum well are depicted in Fig. 10a (Fig. 10D).
field domain. All parts of these isolas are unstable for thePifferentcurves are marked by the index of the affected quan-

doping density considered here but stable branches exist f&yM Well. The influence of a particular quantum well is largest
higher doping. The isolas become more complex when dopinlj It IS located somewhere in the middle of the superlattice (in
fluctuations are introduced since additional branches emerd8€ Particular superlattice considered here, numerical compu-

at cusp points; some of these branches are stable for sufficieraions yield the 17 well).
degrees of disorder. Unfortunately, the total effect of a sequence of random fluc-

If the degree of disordew, is high enough, some isolas tuations (Fig. 10c) cannot be predicted from a superposition

merge with the “standard”, continuous current-voltage characof the effects of the individual single perturbations as in the

teristic resulting in a more complex but still continuously con-€9ime of multistable field domains. In contrast to the lat-

nected curve. Fig. 8 depicts the same section of the full corl€ case, where the charge accumulation forming the domain

tinuous current-voltage characteristic below (inset) and abovgo_unda_ry is largely confined to a single quantum well, oscil-
lations involve changes of the charges in a large number of

IV. EFFECTS OF DOPING FLUCTUATIONS ON
OSCILLATIONS
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FIG. 6. Current-voltage characteristics for superlattices with different degrees of doping fluctusti@)scharacteristics for voltage

sweep-up and sweep-dow() stable parts of the full connected current-voltage characteristigs= 7.9 - 1017 cm=3; the vertical scale is
shifted for each curve)c) Phase diagram of mean donor dendily versus voltagé) for « = 8 %.

Arc length 1.0

2.3 2.4 2.5 2.6 230 240 250 260 well no.
UV UV
FIG. 7. (a) Current-voltage characteristic including all stable and unstable stationary states. The “standard” current-voltage characteris
(bold) contains just a small fraction of all stationary statgg. The thin dashed line denotes an isola consisting of unstable states only. The
“standard” current-voltage characteristic is also depicted and marked with bold(i€seld profile for successive points on the isola in (b)

parameterized by the arc length of th&J) diagram. Np = 7.9- 1017 cm™3)

guantum wells resulting in a nonlinear interaction. Further-disorder for most of the realisations tested.

more, Fig. 10c demonstrates that the shape of the regime of For strong disorder, the regime of oscillations may thus ex-
oscillations looks very different for different realizatiogs  tend to doping densities high enough for multistable field do-
for the samex (herea = 12 %) and thus gives no reliable mains to form, associated with saddle-node bifurcation. If a
indication of the global degree of disorder. The regime ofHopf bifurcation and a saddle-node bifurcation coincide this

oscillations tends, however, to become larger with increasings called a Takens-Bogdanov point (see, e.g., Ref. 32).
a superlattice with strong doping fluctuations, two Takens-

Bogdanov points and one cusp point are generated in a sin-
gle codimension-three bifurcation by appropriately adjust-
ing three control parameterd\p, U, «. The two Takens-
Bogdanov points are connected by a curve of Hopf bifurca-
tion points; if«a is increased slightly, this curve merges with

(c)

() -

j [kA/cm?]

16 1.8 2.0 2.2 2.4 y
U V] FIG. 9. Schematic current-voltage characteristics illustrating the

FIG. 8. Current-voltage characteristic for strong disordertransition from an isola of unstable states (left) via a transcritical
(¢ = 10%). The additional unstable branches are connected to thsifurcation (center) to a single continuously connected characteris-
"standard” characteristic at the upper end of the fourth stable brancfic (right). The transcritical bifurcation is marked by a square, sad-
(starting from the left). The inset depicts the same part of the chargle-node bifurcations are marked by diamonds.

acteristic fore = 9% (Np = 7.9- 101 cm™3).
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corresponds to the realization used throughout this paper.
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FIG. 11. Part of the phase diagram near the two Takens-Bogdanov points (marked as erpssessuperlattice with strong disorder.
The regime of oscillations is shaded. Hopf bifurcations are denoted by dashed lines, saddle-node bifurcations by full lines, and horn
clinic bifurcations by the label “hc”. The triangles denote cusp poii@#d.Np versusU for fixedo = 17.5%. (b) « versusU for fixed
Np = 2.14- 1017 cm=3. The dotted, horizontal line marks the intersection of the slices of parameter space presented in the two figures.

the closed curve of Hopf bifurcations found also in superlat-bifurcation and a saddle-node bifurcation merge in the first
tices with no or moderate disorder (Fig. 6¢). In the phase diTakens-Bogdanov point. At higher(c,d) the regime of os-
agram of the mean dopinyp versus voltagé) for fixedae  cillations is limited at lowetJ by a Hopf bifurcation, while at
(Fig. 11a) this gives a single open curve (dashed), which erhigherU it ceases due to a global bifurcation: a homoclinic
closes the shaded area of limit cycle oscillations. Two pairs obifurcation in which a saddle-point collides with a limit cycle,
full lines corresponding to saddle-node bifurcations of domairforming a saddle-loop and subsequently disappearing in the
states are also shown; each ending in a cusp point (triangl€)blue sky” (see, e. g., Ref. 22). Here the amplitude of the limit
The inset shows the phase diagram near a Takens-Bogdanoycle remains finite whereas the frequency tends to %ero.
point in more detail. For highera, we find different bifurcation scenarios. First,
Since we are discussing a codimension-three bifurcatiothe regime of oscillations is no longer bounded from above
scenario, it is not sufficient to merely consider the location ofby a homoclinic (saddle-loop) bifurcation but rather by a
the bifurcation points as a function of two parameters. Theresaddle-node bifurcation on a limit cycle (see, e.g., Fig. 11b
fore, the same Takens-Bogdanov points (crosses) are also der « > 15.4 %), which is another global bifurcation char-
picted in the &, U) plane for fixedNp in Fig. 11b. One of acterized by zero frequency and finite amplitddéor even
the cusp points from (a) is not shown in (b) since it does nohighera, a saddle-node bifurcation line originating from the
depend on the degree of disorder; consequently, there are tvenisp point (triangle) crosses the branch of Hopf bifurcation
saddle-node bifurcation lines extending dowite- 0. Itcan  points (see inset of Fig. 11b). The main regime of oscilla-
be seen that the Hopf bifurcation line (dashed) connecting théons is now limited by two saddle-node bifurcations on the
two Takens-Bogdanov points exists only above a minimuniimit cycle (Fig. 13); in addition, there is a small oscillatory
value ofa. regime (left inset) starting at the Hopf bifurcation and being
Details of the current-voltage characteristics corresponddestroyed in a nearby saddle-loop bifurcation. Note that if the
ing to cross-sections of Fig. 11b at differentare shown in  temporally averaged current is monitored, as is usually done
Fig. 12. Fore = 14.6 % (a) no oscillations exist. With in- in experiments, the current-voltage characteristic is expected
creasingy, at first the regime of oscillations (shaded) is lim- to exhibit sharp transitions when different stationary and os-
ited by two Hopf bifurcation points (Fig. 12b). When the cillatory regimes are entered.
value of the control parameteris slightly increased, a Hopf =~ The saddle-loop bifurcation and the saddle-node bifurca-
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1.78 »_\#»»-/j:f? g 1.78 + o eter space. This reflects the fact that Hopf bifurcations and

saddle-node bifurcations are distinguished by different local
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, ) bifurcation conditions which cannot be simultaneously satis-
1.76 L 1.76 fied. Only for sufficiently strong doping disorder, modeled
S I B v I by spatial fluctuations in the growth direction, do the two

FIG. 12. Details of the current-voltage charac[teristics for fixedregimes of spatio-temporal modes overlap. As a result we
Np = 2.14- 107 cm3 and different degrees of doping disorder. find complex bifurcation scenarios, including codimension-
@ o =146%(b) o = 147% (c)a = 148%(d) « = 152%.  two and codimension-three points, coexistence and switching
Oscillations are shaded. between stationary field domain states and different oscilla-

tion modes, and global bifurcations which lead to a strong
tion on a limit cycle result in a sharp decrease of the oscil—blas tunability of the o§C|IIat|on freguency. ;
As far as a quantitative description of the effects of disorder

I;?E(}Jr:); rﬁ]tlugr;cycg?\év: tc(;_rz](tero nge.?] tgteo\?ollztagelgppr_lc_)ﬁgrheeﬁ concerned, the regime of multistable field domains, and thus
: lurcation points (see ins Ig. 13). . the case of heavy doping, is the easiest to deal with. The su-
fore, if a superlattice is operated near one of these bifurc

tion points. the fr n fth illation can b ntroll §3erlattice is divided into a high-field and a low-field domain,
on points, the frequency of the oscifiation can be Controlied, 4 e gomain boundary, formed by almost the entire charge
by just changing the applied external voltagk,slightly. In

Ref. 18. another exolanation is qiven for the increase of th accumulation, is localized in a single quantum well. The cur-
Lo xp lon 1S giv ' s Fent through the superlattice is then dominated by the proper-

frequency with bias by discusging the spgce_available for thﬁes of a single quantum well (and a single barrier). Analyzing
charge monopole to travel. This explanation is not appllcablet!he peak currents of the different branches of a current-voltage

LO ?gr model forl supetrlatﬁlciaoitggghort Ieln%[t_h Chosezhergharacteristic thus gives quantitative insight into the local dop-
ut becomes relévant only = V0 superiatlice periods. ing of the individual wells and hence into the quality of the
Voltage tuning of limit cycle oscillations has indeed been ob-

served experimentally in doped superlattié&Such behavior sample.
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FIG. 13. Current-voltage characteristic corresponding to the dot-
ted line in Fig. 11 Np = 2.14- 1017 cm3, & = 17.59%). The main shall assume that the electrons relax fast to the lowest subband

regime of limit cycle oscillations (shaded) is bounded on both sided" each quantum well, and there is no Fermi-degeneracy. The

by saddle-node bifurcations on the limit cycle. The left inset showstranSport equations can then always be written in the form

the region near the Hopf bifurcatior-§ in an enlarged scale. The . . ]
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small oscillatory regime (shaded) is bounded on the right-hand side (A1)

by a saddle-loop bifurcation. The right inset depicts the variation of
the frequencyf with voltageU.



wheren® is the electron density in thié" well; fi; denotes is determined by the condition thEt") has moved sufficiently
the transport coefficient for transitions from th® to theith  farinto the negative differential conductivity (NDC) regime of
well, and fjj = —Zj#i fji summarizes all transitions out of fi,ifl-lo’ﬂ _ _

theith well. The coefficients are assumed to exhibit a two- FOr &ll stationary states, the current density

peak structure as a function of the electric fi€f for ap-
propriate values of.

The coupling betv(\ilf,-en the electron densiti€s, the dop- ¢t pe independent & Let us discuss what the limiting

ing concentrationdN,’ and the electric fields" is given  effect in obtaining a higher current density at the bifurcation
by Gauss’ law (3). An increase in the electron density in apoint is. If we assume the electron densities to be fixed, a
particular quantum well has the same effect upon the electrigironger current is equivalent to larger valuedigfy k. Since
field, and thus the transport coefficierfis, as a decrease in  for sufficiently heavy doping all fields ¥ are in the positive
the doping density in that well: differential conductivity regime ofy x_1 except fork = i 7
of. of. this is possible by increasiri@(k) k=1,..,k#i,slghty.
— o _ 7N (A2)  Anoverallincrease in the electric field means that the applied
an® 8Ng() external voltage has to be increased. The necessary adjust-
] ) ] ments of the individual electron densities according to Gauss’
.(i,)As_we a_re_only interested in stationary states, we haveyy are very small as the required increas€ K will be ap-
A" =0 Vi=1,... Taking the total differential yields proximately the same for ak; the assumption of fixed elec-
. o an® tron densities is thus satisfieq. . _
0=dn® = Z = _dn® + Z —le(ak) Vi (A3) Only the current through thiéh barrier cannot be increased
— ank aNl(:,k) in this way asF () lies in the NDC regime thus making this
barrier the limiting element. Since thie— 1)t well does not
form the domain boundarg~2 ~ N4~ and therefore:
of;j 0 © ® © _ The current reache_d in the upper b_ifurcatior_1 p(_)int of a sta-
0= Z Wn (dn —dNp ) + Z fikdn Vi ble branch is proportional to the doping density in the quan-
K,j k tum well next to the well (on the cathode side) at which the
(Ad) domain boundary is located.
For a sufficiently high doping density, the upper bifurcation
Since the coefficientd;; are very sensitive to changes in the Point lies very close to the point of maximum current; thus, for
electric field and thus to changes in the electron densities, theractical purposes it is not necessary to distinguish between
first term is usually much larger than the second one, whicfhese two. o . .
can therefore be neglected. Assuming the m nf. to be The main source of error in this approximate argument is

regular, i. e., excluding bifurcation points, this yields the con—due to the neglect of th_e second term in (Ad). If it 1S '.”C'“ded'
dition some electrons are shifted from quantum wells with increased

doping into the neighbouring wells, mainly in the direction of
dn® =dN®  vk=1,... (A5)  field.

j = firrkn® (A7)

Applying (A1) and (A2), we find

Integrating this equation yields

K
n® - NS =const  vk=1,... (AB)
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