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We investigate the effects of frozen-in spatial fluctuations of the doping density on the different forms of
spatio-temporal pattern formation found in weakly-coupled,n-doped superlattices as described by a simple
microscopic model. For heavy doping, multistable field domains are observed, while for lower doping space
charge oscillations are found. The corresponding bifurcation scenarios are discussed. We demonstrate that there
occurs a qualitative change once the degree of disorder exceeds a certain threshold. For the case of moderate
disorder and heavy doping, a direct correlation between the peak current of each branch of the current-voltage
characteristic and the doping density in the corresponding quantum well is derived and applied to analyse a
measured characteristic.

I. INTRODUCTION

The formation of electric field domains in a semiconductor
superlattice in the high-field regime was already predicted by
Esaki and Chang1 and verified later for both doped and op-
tically excited superlattices2–4. These results were explained
using different theoretical models.5–7 Later, time-dependent
features like transient8 and persistent current oscillations were
also found both in simulations9,10 and experimentally11. Re-
cently, the agreement of simulations with experimental results
was considerably improved by taking into account growth-
related disorder and structural imperfections.12–16

For a structurally perfect superlattice general features of
stationary field domains17 and self-oscillations18 have re-
cently been analyzed in terms of a simple, analytically
tractable model.

The purpose of the present paper is to gain a deeper un-
derstanding of the different nonlinear spatio-temporal modes
and their sensitivity to the presence of growth-related doping
fluctuations. We do this by presenting a comprehensive anal-
ysis of bifurcation scenarios not only in dependence on bias
voltage and mean donor density but by taking the degree of
disorder into account as a third, equally important system pa-
rameter. The different regimes of stationary multistable field
domains and self-sustained oscillations are investigated in the
framework of the microscopic model of Ref. 12.

The superlattices discussed in this paper consist ofN (typ-
ically 40) GaAs quantum wells of widthl separated byN − 1
AlAs barriers of widthb. The values used in the simulation
are summarized in Tab. I. The wells are n-doped with an av-
erage doping density (per unit volume)ND . Due to the rel-
atively wide barriers considered, the coupling between dif-
ferent quantum wells is weak, and thus each electron is ef-
fectively localized in a quantum well. Charge transport then
occurs mainly through sequential tunnelling between adjacent
wells.

We use the electron concentrations (per unit area) in the
kth energy level of thei th quantum well,n(i )

k , as the dynamic
variables of our system. For moderate applied voltages, we
can restrict ourselves to the two lowest energy levels,k =

1, 2. The rate of change of the electron densities can then be
expressed as6
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whereτ21 is the intersubband relaxation time.R(i )
k is the tran-

sition probability per unit time for electrons crossing thei th

barrier (located between thei th and the(i +1)st well) between
equivalent subbandsk of two adjacent wells and is modeled
by a simple phenomenological approximation.19 The coeffi-
cients X(i )

r , X(i )
l , Y(i )

r and Y(i )
l for transitions between dif-

ferent subbands of adjacent wells are determined by resonant
tunnelling and are calculated from quantum mechanical per-
turbation theory.6 X stands for transitions from the first to the
second subband, andY stands for the reverse process. The
subscriptsr andl denote resonant tunnelling to the right (to-
wards the anode) and to the left (towards the cathode), re-
spectively. All transport coefficients depend strongly upon the
electric fieldF (i ) in the respective barrier.

For a realistic modeling of the measured current-voltage
characteristics, spatial fluctuations of the structural parame-
ters, i. e., the widths of the barriers,b, and the quantum wells,
l , as well as the doping density,ND , must be included. Fluc-
tuations of these three quantities have already been examined
in Refs.12,14, where it was inferred from a comparison with

TABLE I. Parameters of the superlattices used in the simulations.

Width of GaAs quantum wells b = 90 Å
Width of AlAs barriers l = 15 Å
Number of quantum wells N = 40
Relative permittivity of GaAs εW = 13.2
Intersubband relaxation time τ21 = 1 ps
Lattice temperature TL = 5 K
Conduction band discontinuity V0 = 982 meV
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experiment that doping fluctuations are the most likely form
of microscopic disorder responsible for the irregular shapes of
measured current-voltage characteristics.

To model doping fluctuations, we introduce local donor
densities,N(i )

D = (
1 + αe(i )

)
ND in the i th quantum well,

which are distributed around a mean valueND and parame-
terized by a random sequence ofN values{e(i )} and a scaling
parameterα which quantifies the degree of disorder without
changing the individual random sequence. For the computa-
tions presented in this paper, we choose{e(i )} to be equidis-
tributed in the interval [−1, 1] but the concept is easily ex-
tended to more general distributions.

The fields are related to the electron densities and the dop-
ing densities by the discrete version of Gauss’ law,

ε
(

F (i+1) − F (i )
)

= e
(
n(i )

1 + n(i )
2 − l N (i )

D

)
, (3)

whereε is the permittivity of GaAs. The total voltage drop
across the superlattice must be equal to the external voltageU
applied to the sample:

∑
i

(l + b) F (i ) = U, (4)

which represents a global coupling condition for the electron
densities in the system.

The sample contacts are treated as two additional “vir-
tual” quantum wells denoted byi = 0 and i = N + 1,
in which the electron densities are fixed atn(i )

1 = 2ND and

n(i )
2 = 0. Thus, we use Dirichlet boundary conditions mod-

eling Ohmic contacts as a carrier reservoir created by heav-
ily doped boundary layers. Different boundary conditions,
n(0)

k = n(1)
k andn(N+1)

k = n(N)
k , which can be conceived as

a discrete form of Neumann boundary conditions, have been
discussed previously.6,12,13

The total current density across thei th barrier, composed
of the conduction and the displacement current densities, is
given by

j = e ·
[
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1 ·
(
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r

)
+ n(i−1)

2 ·
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]
+ ε Ḟ (i ), (5)

and does not depend on the specific quantum well number,
i .20

Let us first discuss the case of a homogeneous stationary
field distribution throughout the superlattice (neglecting dis-
order and boundary effects). By (3), this is equivalent to
the absence of any charge accumulation or depletion, i. e.
n(i )

1 +n(i )
2 = ND . Thus, the electric field is fixed by the applied

voltageU , F (i ) = U/ (N · (l + b)), and one can determine
the current-voltage characteristic from (5) taken at the steady
state. The macroscopicj (U)-characteristic is then related to
the local drift velocityv(F) by setting j (U) = ev(F)ND .15

Both characteristics exhibit two distinct maxima; the first peak
is associated with miniband conduction, the second one is
caused by resonant tunnelling between different energy lev-
els in adjacent wells. Beyond the first peak, there is a regime
of negative differential conductivity (NDC).
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FIG. 1. Phase diagram of spatio-temporal instabilities as a func-
tion of external voltageU and doping densityND for a “perfect” su-
perlattice. Saddle-node bifurcations are marked by solid lines, Hopf
bifurcations by dashed lines and cusp points as triangles (4).

II. BIFURCATION SCENARIOS OF SPATIO-TEMPORAL
PATTERNS

In order to gain insight into the general features of the
spatio-temporal scenarios, we shall first briefly review the
case of a structurally perfect sample. The different regimes
of spatio-temporal behavior found from our simulations are
summarized in the phase diagram of Fig. 1. The current-
voltage characteristics corresponding to cross-sections for dif-
ferent fixedND are depicted in Fig. 2.

The spatially homogeneous,N-shaped current-voltage
characteristic is stable only at low doping (Fig. 2a). For higher
doping, a smeared-out domain-like field distribution forms,
and a bistableZ-shaped current-voltage characteristic arises
(Fig. 2b), indicating a transition between a smeared-out field
domain for high current and lower voltage, and an almost ho-
mogeneous field distribution for low current and higher volt-
age. The positions of saddle-node bifurcation points where a
stable and an unstable steady state merge are indicated by di-
amonds; they form two lines in the lower part of the phase di-
agram in Fig. 1. At a minimum value ofND the two lines end
in a cusp point where thej (U)-characteristic changes from
N-shaped toZ-shaped.

At higher doping, spatio-temporal instabilities lead to self-
generated current oscillations associated with the build-up of
space charges.9 Here, the current-voltage characteristic con-
tains a regime of limit cycle oscillations (Fig. 2c). This regime
is confined by supercritical Hopf bifurcation points, marked as
a closed dashed line in Fig. 1. Note that subcritical Hopf bifur-
cations can be observed for different boundary conditions.13

A typical oscillation is depicted in Fig. 3. The field pro-
file in Fig. 3a shows that an inhomogeneous field distribution
forms and moves towards the anode. The charge accumulation
associated with it (Fig. 3b) grows in order to fulfill the global
coupling condition (4), and eventually, near the anode, van-
ishes. Then the whole cycle is repeated.15 The corresponding
oscillation of the current density,j , is almost perfectly sin-
usoidal. The oscillation exhibits a square-root dependence of
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FIG. 2. Current-voltage characteristics for doping densities of(a) ND = 3.2 · 1015 cm−3, (b) ND = 1016 cm−3, (c) ND = 7 · 1016 cm−3,
(d) ND = 1017 cm−3, (e) ND = 2·1017 cm−3, (f) ND = 7.9·1017 cm−3. In all current-voltage characteristics presented in this paper, stable
stationary states are marked as solid lines, unstable ones as dashed lines, saddle-node bifurcation points as diamonds (�) and Hopf bifurcation
points as crosses (+). Oscillations are indicated by shaded areas within minimum and maximum current density. The insets show enlarged
sections of the respective current-voltage characteristics.

the amplitude upon the distance from the bifurcation point as
shown in the inset of Fig. 3c for fixedND and increasingU .
The frequency is not affected by this bifurcation and is de-
termined near the bifurcation point by the imaginary part of
the corresponding eigenvalue (Fig. 3c). Similar results are ob-
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FIG. 3. Limit cycle oscillation (ND = 5 · 1016 cm−3). (a) Tem-
poral evolution of the field profileF , (b) Temporal evolution of the
charge density,ρ (U = 1 V). (c) Frequency of the oscillation versus
U (solid line). The frequency corresponding to the imaginary part of
the largest eigenvalue is shown as a dashed line. The inset depicts
the amplitude of the current densityj (in kA/cm2) versusU (in V)
near one of the Hopf bifurcation points (+). (d) Phase portrait ofn30

1
versusn29

1 (+: unstable fixed-point, solid line: limit cycle, dashed
line: trajectory lying in the center manifold, dotted line: trajectory
starting outside the center manifold; the other trajectories start near
the limit cycle).

tained for fixedU and variableND . Over the entire oscillatory
regime, the frequency varies by approximately 25 % similar to
what is seen in Ref. 18 for corresponding boundary conditions
(cf. the inset of Fig. 13b therein). The frequencies calculated
there, however, depend strongly on the choice of boundary
conditionn(0) = (1+ c)ND parametrized byc. The values of
c used throughout most of Ref. 18 are very small and thus dif-
ferent from our model which assumes heavily doped boundary
layers. Therefore most of the results presented in Ref. 18 can
not directly be compared with our results. However, for Neu-
mann boundary conditions we have also found frequencies
strongly varying with voltage and decreasing monotonically
almost down to zero21 as in the model of Ref. 18. This is con-
sistent with the results found in Ref. 18, since both types of
boundary conditions allow for an (almost) homogeneous field
distribution as a stationary solution, in contrast to the heavily
doped boundary layer conditions used in the present paper.

The dynamics is fast in the directions orthogonal to the cen-
ter manifold (see, e. g., Ref. 22), in which the limit cycle as
well as the corresponding unstable fixed point are embedded
(Fig. 3d).

Note that in contrast to the formation of stationary field do-
mains, the superlattice must contain a minimum number of
quantum wells to enable oscillations.17 In addition to such
charge oscillations of a single domain boundary, at higher
doping levels traveling high-field domains embedded between
two low-field domains are found if the model is extended to
accommodate highly doped boundary layers adjacent to the
contacts. Thus current oscillations may also occur at larger
doping.

At the highest doping densities, the number of available car-
riers is sufficient to provide the space charge necessary to form
a stable, stationary boundary between a low-field and a high-
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FIG. 4. Field profile as a function of the doping density,ND , for
fixedU = 1 V.

field domain (cf. Fig. 4). The build-up of a charge accumula-
tion and the subsequent nucleation of field domains is a pro-
cess of self-organized pattern formation, which is common in
semiconductors with negative differential conductivity.23–26

However, there are essential differences compared, e. g., to
the classical Gunn domain instability, which is associated with
a traveling triangular domain. For its existence it is required
only that thev(F)-characteristic has one rising and one falling
branch. In the superlattice, the high- and low-field domains
correspond to spatial coexistence of two stable states of the
local j (F)-characteristic at the same current density,15 while
the Gunn domains have a triangular field profile whose max-
imum does not attain a second stable state.24 Different equal
area rules have been derived for both cases.10,15,27,28 If the
doping density is sufficiently high, the width of the domain
boundary is of the order of the superlattice period. In this case,
the domain boundary is localized in a specific quantum well
and, in contrast to the Gunn diode, cannot move continuously
through the sample but can only jump from one quantum well
to the next. As a result, there exist different stable station-
ary domain states (their number being approximately equal to
the number of quantum wells) which arise from different lo-
cations of the boundary.

As the domain boundary is shifted from the anode to the
cathode with increasing voltage, the current-voltage charac-
teristic exhibits small modulations in the form of sequences
of N- (Fig. 2e) orZ-shaped (Fig. 2f) branches correspond-
ing to different locations of the domain boundary as shown
experimentally.29 The different stable branches are connected
by unstable parts as depicted in the insets. Thus the current-
voltage characteristic consists of a single continuously con-
nected curve, along which stable and unstable parts alternate.
The changes of stability are caused by saddle-node bifurca-
tions, which show up as a complex pattern of intersecting
lines in the upper part of Fig. 1. This diagram allows one
to determine the positions of the individual current branches
as well as, for given parametersU and ND , the number of
multistable states. The two lines of saddle-node bifurcation
points belonging to a particular unstable branch merge in a
cusp point. Thus, the associated value ofND is the minimum
doping density necessary for multistability and hysteresis of
current branches. Since the cusp points lie at slightly different
values ofND , in the respective range ofND values hysteresis
may set on only above a certain threshold voltage as can be

seen in the inset of Fig. 2e. The overall behavior shown in
Fig. 2 for the structurally perfect model is similar to the one
found in simple phenomenological models.17,29

III. EFFECTS OF DOPING FLUCTUATIONS ON FIELD
DOMAINS

In the next two sections we will discuss how doping fluctu-
ations affect the spatio-temporal patterns, i. e., the formation
of multistable field domains and limit cycle oscillations. First,
we focus on field domains.

Fig. 5 shows how the current-voltage characteristic changes
in the regime of domain formation if the donor density in a sin-
gle quantum well is either increased (b) or decreased (c) with
respect to the unperturbed case (a). It is evident that there
exists a direct correlation between the local doping density
in the kth well and the peak current of the(k + 1)th branch
of the current-voltage characteristic (counting from the right)
corresponding to the location of the domain boundary at the
(k + 1)th well. One can even infer quantitative information
about the local doping density from the peak currents, i. e., the
positions of the saddle-node bifurcations which mark the end
of a stable branch. It is shown analytically in the appendix un-
der some simplifying assumptions that the maximum current
reached on a particular stable branch is proportional to the
doping density in the quantum well next to the well at which
the domain boundary is located. This opens up the possibil-
ity to determine the local values of the ratioN(i )

D /ND with
good precision from measured current-voltage characteristics
and thereby characterize the quality of a sample. This proce-
dure has been tested by applying it to numerically simulated
characteristics with random doping fluctuations.30

It has also been successfully applied to several measured
characteristics where it yields reasonable estimates of the de-
gree of disorder. The computed values of the relative variation

δi =
(

N(i )
D − ND

)
/ND of the local doping density in thei th

quantum well from the mean doping densityND are shown
in Tab. II. Thus, the current-voltage characteristic serves as
a direct “fingerprint” of the microscopic realization of doping
fluctuations. For quantum wells close to the cathode or anode,
boundary effects become important, and therefore the respec-
tive quantum wells have not been included in the analysis. The

TABLE II. Computed relative variations

δi =
(

N(i )
D − ND

)
/ND of the doping density in thei th quantum

well for the sample investigated in Ref. 29.

δ2 = 7.5 % δ3 = -5.9 % δ4 = 6.2 % δ5 = -5.9 %
δ6 = -1.0 % δ7 = 1.0 % δ8 = 9.3 % δ9 = 2.7 %
δ10 = 7.1 % δ11 = 12.0 % δ12 = 14.0 % δ13 = 3.0 %
δ14 = 2.8 % δ15 = 1.4 % δ16 = -6.6 % δ17 = -14.6 %
δ18 = -7.0 % δ19 = -6.9 % δ20 = -8.3 % δ21 = -1.9 %
δ22 = -2.1 % δ23 = -4.9 % δ24 = -6.1 % δ25 = -5.2 %
δ26 = -1.4 % δ27 = -4.6 % δ28 = 0.1 % δ29 = -2.3 %
δ30 = -1.2 % δ31 = 3.4 % δ32 = 1.7 % δ33 = 13.8 %
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FIG. 5. Part of the current-voltage characteristics in the regime of domain formation (ND = 7.9 · 1017 cm−3). The doping density in the
20-th well is(b) increased by 10 %,(c) decreased by 10 %. The unperturbed characteristic is displayed in(a). The branches are numbered
according to the location of the domain boundary at thek-th well.

standard deviation
√∑

i δ2
i /N of the doping density is 6.7 %

(corresponding to a value ofα = 10.8 %) which is in good
agreement with what is generally known about the properties
of the growth process.

Even though the full continuously connected current-
voltage characteristic, consisting of alternating stable and un-
stable branches, shows only slight changes if moderate disor-
der is introduced, the characteristic which is found under volt-
age sweep-up or sweep-down, may change qualitatively. Indi-
vidual branches are shifted and their lengths are changed ac-
cording to the doping densities in the corresponding quantum
wells; thus, some stable branches might be missed out com-
pletely during voltage sweep-up or sweep-down if the dop-
ing densities in two adjacent quantum wells differ sufficiently.
This is demonstrated in Fig. 6 by comparing voltage sweep-
up and sweep-down (a) with the full stable branches (b).
For a given degree of disorderα, the effect of missed-out
branches is most pronounced at large doping or high voltage.
A careful inspection of the saddle-node lines in the associ-
ated phase diagram (Fig. 6c) already allows one to determine
which branches are missed out for givenND .

Apart from the single continuously connected current-
voltage characteristic, there exist numerous other stationary
states, i. e., fixed points of the dynamic system (1), (2), most
of them being unstable. Some of them are depicted in Fig. 7a
for a superlattice without doping fluctuations. With the ex-
ception of an additional peak, their field profiles are similar to
those of states on the “standard” current-voltage characteris-
tic. Almost all such states form “isolas” (closed curves) in the
j (U)-diagram.

We will now focus on a particular class of isolas; a typical
member is depicted in Figs. 7b (thin dashed line) and 7c. The
field profile displays an additional, smaller peak in the low-
field domain. All parts of these isolas are unstable for the
doping density considered here but stable branches exist for
higher doping. The isolas become more complex when doping
fluctuations are introduced since additional branches emerge
at cusp points; some of these branches are stable for sufficient
degrees of disorder.

If the degree of disorder,α, is high enough, some isolas
merge with the “standard”, continuous current-voltage charac-
teristic resulting in a more complex but still continuously con-
nected curve. Fig. 8 depicts the same section of the full con-
tinuous current-voltage characteristic below (inset) and above

(main figure) this threshold. This qualitative change, marking
the transition between moderate and strong disorder, is caused
by a perturbed transcritical bifurcation (see, e. g., Ref. 31) as
schematically sketched in Fig. 9. For lowα (left) the unsta-
ble isola and the “standard” characteristic (stable and unsta-
ble branch) are separate. At the threshold value ofα (center)
the isola and the stable branch join at a transcritical bifurca-
tion point (marked as a square) where two branches exchange
their stability. For larger values ofα the transcritical bifurca-
tion point splits into two saddle-node points, thereby forming
a single connected characteristic into which the isola has been
“inserted”.

If α is increased even further, additional isolas are inserted
into the continuous characteristic; some isolas separate off
again for even stronger disorder. Furthermore, several isolas
may combine to form a single, more complex isola in a sim-
ilar scenario before merging with the continuously connected
current-voltage characteristic, which can thus incorporate a
large number of additional branches in a single bifurcation.

IV. EFFECTS OF DOPING FLUCTUATIONS ON
OSCILLATIONS

The main effect of disorder in the regime of limit-cycle os-
cillations is to shift and deform its location in parameter space.
For moderate disorder, it is determined by the location of the
Hopf bifurcation points (Fig. 6c, dashed) as in the perfect su-
perlattice (Fig. 1). The change of the oscillation amplitude
and frequency for fixed voltage and fixed donor density is only
slight.

The effects of an increase (decrease) of the doping density
in a single quantum well are depicted in Fig. 10a (Fig. 10b).
Different curves are marked by the index of the affected quan-
tum well. The influence of a particular quantum well is largest
if it is located somewhere in the middle of the superlattice (in
the particular superlattice considered here, numerical compu-
tations yield the 17th well).

Unfortunately, the total effect of a sequence of random fluc-
tuations (Fig. 10c) cannot be predicted from a superposition
of the effects of the individual single perturbations as in the
regime of multistable field domains. In contrast to the lat-
ter case, where the charge accumulation forming the domain
boundary is largely confined to a single quantum well, oscil-
lations involve changes of the charges in a large number of
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FIG. 6. Current-voltage characteristics for superlattices with different degrees of doping fluctuationsα, (a) characteristics for voltage
sweep-up and sweep-down,(b) stable parts of the full connected current-voltage characteristics (ND = 7.9 · 1017 cm−3; the vertical scale is
shifted for each curve).(c) Phase diagram of mean donor densityND versus voltageU for α = 8 %.
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quantum wells resulting in a nonlinear interaction. Further-
more, Fig. 10c demonstrates that the shape of the regime of
oscillations looks very different for different realizationsei
for the sameα (hereα = 12 %) and thus gives no reliable
indication of the global degree of disorder. The regime of
oscillations tends, however, to become larger with increasing
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FIG. 8. Current-voltage characteristic for strong disorder

(α = 10 %). The additional unstable branches are connected to the
”standard” characteristic at the upper end of the fourth stable branch
(starting from the left). The inset depicts the same part of the char-
acteristic forα = 9 % (ND = 7.9 · 1017 cm−3).

disorder for most of the realisations tested.
For strong disorder, the regime of oscillations may thus ex-

tend to doping densities high enough for multistable field do-
mains to form, associated with saddle-node bifurcation. If a
Hopf bifurcation and a saddle-node bifurcation coincide this
is called a Takens-Bogdanov point (see, e. g., Ref. 32). In
a superlattice with strong doping fluctuations, two Takens-
Bogdanov points and one cusp point are generated in a sin-
gle codimension-three bifurcation by appropriately adjust-
ing three control parameters:ND,U, α. The two Takens-
Bogdanov points are connected by a curve of Hopf bifurca-
tion points; ifα is increased slightly, this curve merges with

U

j (a) (b) (c)

FIG. 9. Schematic current-voltage characteristics illustrating the
transition from an isola of unstable states (left) via a transcritical
bifurcation (center) to a single continuously connected characteris-
tic (right). The transcritical bifurcation is marked by a square, sad-
dle-node bifurcations are marked by diamonds.
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FIG. 10. Phase diagram of the oscillatory regime enclosed by Hopf bifurcation points for superlattices with doping fluctuations. The doping
density in a single quantum well is(a) increased,(b) decreased by 12 %. Each line is labeled by the number of the quantum well whose doping
density is altered.(c) Different realizations of doping disorder{e(i )} with α = 12 % (solid line:α = 0 %). The curve with the longest dashes
corresponds to the realization used throughout this paper.
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FIG. 11. Part of the phase diagram near the two Takens-Bogdanov points (marked as crosses,+) in a superlattice with strong disorder.
The regime of oscillations is shaded. Hopf bifurcations are denoted by dashed lines, saddle-node bifurcations by full lines, and homo-
clinic bifurcations by the label “hc”. The triangles denote cusp points.(a) ND versusU for fixed α = 17.5 %. (b) α versusU for fixed
ND = 2.14 · 1017cm−3. The dotted, horizontal line marks the intersection of the slices of parameter space presented in the two figures.

the closed curve of Hopf bifurcations found also in superlat-
tices with no or moderate disorder (Fig. 6c). In the phase di-
agram of the mean dopingND versus voltageU for fixed α

(Fig. 11a) this gives a single open curve (dashed), which en-
closes the shaded area of limit cycle oscillations. Two pairs of
full lines corresponding to saddle-node bifurcations of domain
states are also shown; each ending in a cusp point (triangle).
The inset shows the phase diagram near a Takens-Bogdanov
point in more detail.

Since we are discussing a codimension-three bifurcation
scenario, it is not sufficient to merely consider the location of
the bifurcation points as a function of two parameters. There-
fore, the same Takens-Bogdanov points (crosses) are also de-
picted in the (α,U ) plane for fixedND in Fig. 11b. One of
the cusp points from (a) is not shown in (b) since it does not
depend on the degree of disorder; consequently, there are two
saddle-node bifurcation lines extending down toα = 0. It can
be seen that the Hopf bifurcation line (dashed) connecting the
two Takens-Bogdanov points exists only above a minimum
value ofα.

Details of the current-voltage characteristics correspond-
ing to cross-sections of Fig. 11b at differentα are shown in
Fig. 12. Forα = 14.6 % (a) no oscillations exist. With in-
creasingα, at first the regime of oscillations (shaded) is lim-
ited by two Hopf bifurcation points (Fig. 12b). When the
value of the control parameterα is slightly increased, a Hopf

bifurcation and a saddle-node bifurcation merge in the first
Takens-Bogdanov point. At higherα (c,d) the regime of os-
cillations is limited at lowerU by a Hopf bifurcation, while at
higherU it ceases due to a global bifurcation: a homoclinic
bifurcation in which a saddle-point collides with a limit cycle,
forming a saddle-loop and subsequently disappearing in the
”blue sky” (see, e. g., Ref. 22). Here the amplitude of the limit
cycle remains finite whereas the frequency tends to zero.32

For higherα, we find different bifurcation scenarios. First,
the regime of oscillations is no longer bounded from above
by a homoclinic (saddle-loop) bifurcation but rather by a
saddle-node bifurcation on a limit cycle (see, e. g., Fig. 11b
for α ≥ 15.4 %), which is another global bifurcation char-
acterized by zero frequency and finite amplitude.22 For even
higherα, a saddle-node bifurcation line originating from the
cusp point (triangle) crosses the branch of Hopf bifurcation
points (see inset of Fig. 11b). The main regime of oscilla-
tions is now limited by two saddle-node bifurcations on the
limit cycle (Fig. 13); in addition, there is a small oscillatory
regime (left inset) starting at the Hopf bifurcation and being
destroyed in a nearby saddle-loop bifurcation. Note that if the
temporally averaged current is monitored, as is usually done
in experiments, the current-voltage characteristic is expected
to exhibit sharp transitions when different stationary and os-
cillatory regimes are entered.

The saddle-loop bifurcation and the saddle-node bifurca-
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FIG. 12. Details of the current-voltage characteristics for fixed
ND = 2.14 · 1017 cm−3 and different degrees of doping disorder.
(a) α = 14.6 % (b) α = 14.7 % (c) α = 14.8 % (d) α = 15.2 %.
Oscillations are shaded.

tion on a limit cycle result in a sharp decrease of the oscil-
lation frequency down to zero when the voltage approaches
one of the bifurcation points (see inset of Fig. 13). There-
fore, if a superlattice is operated near one of these bifurca-
tion points, the frequency of the oscillation can be controlled
by just changing the applied external voltage,U , slightly. In
Ref. 18, another explanation is given for the increase of the
frequency with bias by discussing the space available for the
charge monopole to travel. This explanation is not applicable
to our model for superlattices of the short length chosen here
but becomes relevant only forN ≥ 200 superlattice periods.
Voltage tuning of limit cycle oscillations has indeed been ob-
served experimentally in doped superlattices.18 Such behavior
as well as the experimentally found discontinuous switching
between different oscillatory modes33 can be consistently ex-
plained also within our model.
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FIG. 13. Current-voltage characteristic corresponding to the dot-
ted line in Fig. 11 (ND = 2.14 · 1017 cm−3, α = 17.5 %). The main
regime of limit cycle oscillations (shaded) is bounded on both sides
by saddle-node bifurcations on the limit cycle. The left inset shows
the region near the Hopf bifurcation (+) in an enlarged scale. The
small oscillatory regime (shaded) is bounded on the right-hand side
by a saddle-loop bifurcation. The right inset depicts the variation of
the frequencyf with voltageU .

V. CONCLUSIONS

In this paper we have theoretically examined two different
forms of spatio-temporal pattern formation found in semicon-
ductor superlattices, i. e., stationary multistable field domains
and limit cycle oscillations. In superlattices without doping
fluctuations as well as in superlattices with moderate disorder,
the corresponding regimes are well separated in the param-
eter space. This reflects the fact that Hopf bifurcations and
saddle-node bifurcations are distinguished by different local
bifurcation conditions which cannot be simultaneously satis-
fied. Only for sufficiently strong doping disorder, modeled
by spatial fluctuations in the growth direction, do the two
regimes of spatio-temporal modes overlap. As a result we
find complex bifurcation scenarios, including codimension-
two and codimension-three points, coexistence and switching
between stationary field domain states and different oscilla-
tion modes, and global bifurcations which lead to a strong
bias tunability of the oscillation frequency.

As far as a quantitative description of the effects of disorder
is concerned, the regime of multistable field domains, and thus
the case of heavy doping, is the easiest to deal with. The su-
perlattice is divided into a high-field and a low-field domain,
and the domain boundary, formed by almost the entire charge
accumulation, is localized in a single quantum well. The cur-
rent through the superlattice is then dominated by the proper-
ties of a single quantum well (and a single barrier). Analyzing
the peak currents of the different branches of a current-voltage
characteristic thus gives quantitative insight into the local dop-
ing of the individual wells and hence into the quality of the
sample.
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APPENDIX: CURRENT-VOLTAGE CHARACTERISTIC
FOR HEAVILY DOPED SUPERLATTICES

In this appendix, a correlation between the local doping
density in thekth quantum well and the current-voltage char-
acteristic in the regime of field domains will be derived ana-
lytically under simplifying assumptions. The results are valid
irrespectively of the particular transport model used as long
as only stationary states are of interest.21 In the following, we
shall assume that the electrons relax fast to the lowest subband
in each quantum well, and there is no Fermi-degeneracy. The
transport equations can then always be written in the form

ṅ(i ) =
∑

j

fi j n( j ), i = 1, . . . (A1)
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wheren(i ) is the electron density in thei th well; fi j denotes
the transport coefficient for transitions from thej th to thei th

well, and fii = − ∑
j 6=i f j i summarizes all transitions out of

the i th well. The coefficients are assumed to exhibit a two-
peak structure as a function of the electric fieldF (k) for ap-
propriate values ofk.

The coupling between the electron densitiesn(i ), the dop-
ing concentrationsN(i )

D and the electric fieldsF (i ) is given
by Gauss’ law (3). An increase in the electron density in a
particular quantum well has the same effect upon the electric
field, and thus the transport coefficientsfi j , as a decrease in
the doping density in that well:

∂ fi j
∂n(k)

= − ∂ fi j

∂ N(k)
D

(A2)

As we are only interested in stationary states, we have
ṅ(i ) = 0 ∀i = 1, . . .. Taking the total differential yields

0 = dṅ(i ) =
∑

k

∂ ṅ(i )

∂n(k)
dn(k) +

∑
k

∂ ṅ(i )

∂ N(k)
D

dN(k)
D ∀i (A3)

Applying (A1) and (A2), we find

0 =
∑
k, j

∂ fi j
∂n(k)

n( j )
(
dn(k) − dN(k)

D

)
+

∑
k

fikdn(k) ∀i

(A4)

Since the coefficientsfi j are very sensitive to changes in the
electric field and thus to changes in the electron densities, the
first term is usually much larger than the second one, which
can therefore be neglected. Assuming the matrix

∂ fi j
∂n(k) to be

regular, i. e., excluding bifurcation points, this yields the con-
dition

dn(k) = dN(k)
D ∀k = 1, . . . (A5)

Integrating this equation yields

n(k) − N(k)
D = const. ∀k = 1, . . . (A6)

Thus, the electron densities n(k) adjust to changes in the dop-
ing densities N(k)

D in such a way that the electric field dis-
tribution F(k) and consequently the transport coefficients fi j
do not change.Furthermore, there is a strict one-to-one corre-
spondence between the perturbed and the unperturbed current-
voltage characteristic except very close to a bifurcation point,
which is in agreement with the results obtained numerically.

Next, we consider the upper saddle-node bifurcation point
of the stable branch for which the domain boundary is lo-
cated in thei th quantum well. For simplicity we assume that
the electrons in each well may only transfer into the adjacent
well in the direction of the field, which effectively reduces
our model to the one used by Bonilla et. al.7,10. In this case,
fi+1,i = − fii , i = 1, . . ., are the only non-zero coefficients,
and fi+1,i = v(F (i+1)) is the velocity-field-characteristic de-
pending only onF (i+1).15 This saddle-node bifurcation point

is determined by the condition thatF (i ) has moved sufficiently
far into the negative differential conductivity (NDC) regime of
fi,i−1.10,17

For all stationary states, the current density

j = fk+1,kn(k) (A7)

must be independent ofk. Let us discuss what the limiting
effect in obtaining a higher current density at the bifurcation
point is. If we assume the electron densities to be fixed, a
stronger current is equivalent to larger values offk+1,k. Since
for sufficiently heavy doping all fieldsF (k) are in the positive
differential conductivity regime offk,k−1 except fork = i ,17

this is possible by increasingF (k), k = 1, . . ., k 6= i , slightly.
An overall increase in the electric field means that the applied
external voltage has to be increased. The necessary adjust-
ments of the individual electron densities according to Gauss’
law are very small as the required increase inF (k) will be ap-
proximately the same for allk; the assumption of fixed elec-
tron densities is thus satisfied.

Only the current through thei th barrier cannot be increased
in this way asF (i ) lies in the NDC regime thus making this
barrier the limiting element. Since the(i − 1)th well does not
form the domain boundary,n(i−1) ≈ N(i−1)

D and therefore:
The current reached in the upper bifurcation point of a sta-

ble branch is proportional to the doping density in the quan-
tum well next to the well (on the cathode side) at which the
domain boundary is located.

For a sufficiently high doping density, the upper bifurcation
point lies very close to the point of maximum current; thus, for
practical purposes it is not necessary to distinguish between
these two.

The main source of error in this approximate argument is
due to the neglect of the second term in (A4). If it is included,
some electrons are shifted from quantum wells with increased
doping into the neighbouring wells, mainly in the direction of
field.
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