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Multistable current-voltage characteristics as fingerprints of
growth-related imperfections in semiconductor superlattices
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The influence of imperfections and growth-related disorder on the current-voltage
characteristics of doped superlattices is investigated theoretically. It is demon-
strated that the location of a defect can be directly identified from the current
measurements. Such measurements can also be used as an estimate for the degree
of microscopic disorder.
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1. Introduction

When sufficiently doped or optically excited, semiconductor superlattices exhibit the formation
of electric field domains for charge transport along the growth direction. This gives rise to the
occurrence of a multistable series of branches in the current-voltage characteristic, as has been
demonstrated both experimentally [1, 2] and theoretically [3, 4]. While theoretical models which
assume a “perfect” superlattice are able to explain the principal features observed in the experiments
they yield a strictly regular sequence as opposed to the measured characteristics, where the different
branches vary considerably in length.

Although seemingly random, those characterstics can be reproduced in detail, even for measure-
ments on different superlattice samples of the same wafer [5]. It is thus reasonable to assume that the
distinct irregular shape of a characteristic is the result of microscopic spatial fluctuations of growth
parameters such as layer thickness or doping density along the growth direction. The observation
that in-plane fluctuations like interface roughness obviously do not play a role for the individual
shape of the current-voltage characteristic of a sample can be understood if one keeps in mind that
their length scales of typically some nm [6] are small compared to the sample dimensions of the
order of 100 µm (cf. e. g. [2]), so they are effectively averaged out.

2. Simulating disorder

As we are considering vertical transport in n-doped superlattices we can limit our calculations to a
one-dimensional description of the conduction band. To simulate charge transport we use a simple
rate equation model for the electron concentrations in the different quantum wells derived in Ref. [3]
for the case of an “ideal” superlattice. In order to deal with varying layer thickness we introduce
a “local” lattice constant di := (li + li−1)/2 + bi, where li and bi are the widths of the ith well

0749–6036/96/000000 + 00 $18.00/0 c© 1996 Academic Press Limited



2 Superlattices and Microstructures, Vol. 23, 1353 (1998)

0

5

10

15

0 1 2 3 4 5

j [
kA

/c
m

2 ]

U [V]

25

0

5

10

15

0 1 2 3 4 5
j [

kA
/c

m
2 ]

U [V]

14

0

5

10

15

0 1 2 3 4 5

j [
kA

/c
m

2 ]

U [V]

25 12

0

5

10

15

0 1 2 3 4 5

j [
kA

/c
m

2 ]

U [V]

(b)(a)

(c) (d)

0 10 20 30 40
0

1
2

3
4

5

0

100

well no.
U [V]

F [kV/cm]

0 10 20 30 40
0

1
2

3
4

5

0

100

well no.
U [V]

F [kV/cm]

(f)

(e)

Fig. 1. Calculated current-voltage characteristics (a–d) of superlattice samples with different defects (N = 40
periods, doping density ND = 6.7 · 1017 cm−3). The numbers refer to the affected branches, counted from the right.
In (a) the 25th well is wider by one monolayer, in (b) the 14th barrier is smaller. (c): smaller 12th and wider 25th

well. (d): random distribution of 7 smaller and 7 wider wells. (e) and (f) show the spatial distribution of the electric
field F as a function of the applied voltage U for (a) and (d), respectively (voltage sweep-up).

and barrier, respectively, which we employ in the expressions for electron transport across the ith

barrier. The inclusion of different doping densities N
(i)
D for each well i into the original model via

Poisson’s equation is straightforward [5, 7].
For the widths of the individual layers of a sample we assume that they can deviate by one

monolayer from the nominal values l and b of the well and barrier widths due to irregularities
during the growth process. We thus use a sequence of N values li ∈ {l, l+∆l, l−∆l} for the widths
of the wells, as well as another sequence of N − 1 values bi ∈ {b, b + ∆b, b − ∆b} for the barriers.
Here, N is the total number of superlattice periods, and ∆l, ∆b are the widths of one monolayer
(≈ 2.8 Å for both GaAs and AlAs). The degree of disorder is then given by the number of smaller
and wider wells (or barriers, respectively).

To simulate doping fluctuations we generate a random series of N values ei ∈ [−1, 1] and calculate
the individual doping densities as N

(i)
D = ND(1 + αei) with a nominal doping density ND. The

parameter α enables us to scale the degree of disorder without altering the individual sequence of
wells with higher and lower doping.

3. Current-voltage characteristics of imperfect superlattices

We have calculated the j(U) characteristics of a GaAs/AlAs superlattice with N = 40 periods,
l = 90 Å, b = 15 Å and a nominal doping density of ND = 6.7 · 1017 cm−3. The principal results,
however, do not depend on those specific values.

Fig. 1 (a) shows the current-voltage characteristic of a superlattice whose 25th well is wider
by one monolayer. One can clearly see that the periodic pattern of the sequence of branches is
disrupted around branch no. 25, counted from the right. This can be explained with the help of the
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Fig. 2. Simulated characteristics of samples with differ-
ent degree α of doping disorder (nominal doping density
ND = 6.7 · 1017 cm−3). The upper curves are vertically
shifted by 4.5 kA/cm2 against one another. Both voltage
sweep-up and sweep-down are shown.
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Fig. 3. Computed continuous characteristic of stable
and unstable stationary states for the same doping den-
sity as in Fig. 2 with α = 8%. The inset shows an en-
larged section (see text).

corresponding spatial field distribution depicted in Fig. 1 (e). While for very small voltages U an
almost homogeneous field distribution exists, a high-field domain forms at the cathode (near well
no. 40) for about U = 0.1 V. With increasing applied voltage this high field domain expands across
the superlattice structure period by period. In the characteristic this leads to the occurrence of
current branches, where consecutive branches correspond to a location of the electron accumulation
(forming the domain boundary) in neighbouring quantum wells [2]. The field distribution shows that
within both the high-field and low-field region the fields across the 25th and 26th barrier are slightly
distorted. This is in order to compensate for the shift of the energy levels in the 25th quantum well
due to its different width, as the current across each barrier must be equal in the stationary state
[5]. For the same reason the voltage at which the domain boundary expands across those periods is
slightly changed compared to the case of a strictly periodic superlattice structure.

In Fig. 1 (b) the simulated characteristic of a sample with a thinner 14th barrier is depicted. Again,
we see a local deviation in the lengths of those two branches that correspond to the wells adjacent to
the perturbation. To satisfy current conservation the field across the thinner barrier must be lower
than elsewhere, which, like in (a), leads to a shift in the voltage at which the domain boundary crosses
that period. In a sample with multiple defects each of them has a local effect in the characteristic,
and they can still be localized easily (cf. Fig. 1 (c)). Only if the number of imperfections is so large
that the periodicity of the sample is lost and the influences of adjacent perturbations on the field
distribution interact, they can no longer be distinguished in the characteristic (Figs. 1 (d), (f)).

Fig. 2 shows the current-voltage characteristics of samples with doping fluctuations. While the
sequence ei is the same for all simulations, different degrees of disorder α have been used. Accord-
ingly, the specific sequence of longer and shorter branches remains the same, whereas the variations
in the lengths of the branches increase with α, and some of the smaller branches are not at all
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visible in case of voltage sweep-up or sweep-down for higher degrees of disorder. It is thus possible
to estimate α from the degree of fluctuation in the lengths of the branches.

4. Quantitative analysis

Instead of numerically solving the time-dependent rate equations with appropriate initial conditions
one can also directly compute the fixed points of the dynamic system, i. e. its (stable or unsta-
ble) stationary states. Fig. 3 demonstrates that the different branches visible in the simulated (or
measured) up-sweep and down-sweep characteristics are part of a single continuously connected
stationary characteristic whose stability alternates via saddle-node bifurcations. It can be shown
that the current density j at any such bifurcation which marks the end of a stable branch is directly
related to the doping density of the respective well. To illustrate this, we have labeled each branch in
the inset of Fig. 3 with the relative deviation ei of the corresponding well from the nominal doping
density of ND = 6.7 · 1017 cm−3. The dotted horizontal line corresponds to a perfect superlattice,
i. e. N

(i)
D = ND. The larger the deviation of the local doping density is, the more differs the current

density j at the corresponding bifurcation point from that dotted line. Thus the degree of disorder
can be directly read off from the maximum currents of the different branches.

5. Conclusions

In conclusion we have demonstrated that microscopic growth-related disorder and imperfections
have a direct influence on the detailed shape of the macroscopic current-voltage characteristic. With
increasing voltage the domain boundary scans the sample period by period from the cathode to the
anode. The resulting current-voltage characteristic thus represents a “fingerprint” of the growth-
related imperfections where the voltage at which a deviation from the periodic branch structure
occurs is directly related to the spatial location of an imperfection within the sample.

For the case of doping fluctuations we have shown a direct relationship between the height of a
current branch and the doping concentration in the corresponding well of the superlattice. If the
type of microscopic disorder is known, current-voltage measurements can thus yield a quantitative
estimate for the degree of those fluctuations.

The authors are indebted to A. Wacker, J. Kastrup, H. T. Grahn, and Y. Zhang for their collab-
oration. This work was supported in part by DFG in the framework of Sfb 296.
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[5] G. Schwarz, A. Wacker, F. Prengel, E. Schöll, J. Kastrup, H. T. Grahn, and K. Ploog, Semi-

cond. Sci. Technol. 11, 475 (1996).
[6] G. Etemadi and J. F. Palmier, Sol. Stat. Comm. 86, 739 (1993).
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