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Chapter 1

Introduction

A random medium in optics is a medium in which the dielectric function var-
ies randomly with position. Frosted glassis afamiliar example. In alaboratory
setting, one can suspend particles in afluid to achieve strong multiple scattering
with little absorption. On amuch larger scale, interstellar clouds and stellar atmo-
spheres provide arandom medium for the radiation propagating through them.

For many applications, a classical description of the electromagnetic field is
sufficient. The theory of propagation of classical waves through random media
has been devel opped extensively in the last two decades[1sh78, She90]. Quantum
effects such as vacuum fluctuations and spontaneous emission of radiation are not
taken into account in these studies. These are the subject of quantum optics, which
however rarely goes beyond one-dimensional scattering.

The essentialy three-dimensional, chaotic scattering present in random me-
dia has so far received little attention in the context of quantum optics. This
deficiency is felt particularly strongly for amplifying media (so called “random
lasers”), wherethe interplay of spontaneous and stimulated emission with chaotic
scattering plays a central role. It isthe purpose of this thesis to make afirst step
towards a bridging of the gap between random media and quantum optics. In this
introduction we present an overview of some of the concepts that will appear in
more detail in the following chapters.
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1.1 Classical electrodynamics

1.1.1 Classical waves

Classical waves allow asimultaneous measurement of amplitude and phase. Clas-
sical electromagnetic waves are described by the Maxwell equations. In a dielec-
tric medium the Fourier component E(F, w) of the electric field satisfies the wave
equation

2
AE(F, o) — graddiv E(F, ) + %g(r,w)E(F,w) -0, (1.1)

together with the transversality condition
divgrade (7, w)E(F,w) = 0. (1.2)

Here c is the speed of light in vacuum and &(F,w) is the position and frequency
dependent dielectric constant (relative to vacuum).

In a random medium &(F,w) fluctuates randomly from point to point. The
polarisation of the electric field is randomised and effectively we may work with
ascaar field E(F,w). The scalar wave equation

2
AE(F,w) + %S(F,w)E(F,w) —0 (1.3)

is known as the Helmholtz equation.

The dielectric constant is real in the absence of absorption. Absorption adds
a positive imaginary part. If ¢ = 1+ig” with ¢” « 1, then the imaginary part
is related to the absorption rate 1/t, at frequency w by we” = 1/t A negative
imaginary part correspondsto amplification by stimulated emission. Spontaneous
emission of radiation cannot be described by a classical wave equation, it requires
a quantisation of the electromagnetic field. That is the topic of the next section,
but first we describe the scattering theory that we will use.

1.1.2 Scattering theory

To formulate a scattering theory, we embed the dielectric medium in awaveguide
(see Fig. 1.1). We assume that ¢ = 1 outside of the region of length L that con-
tains the dielectric medium. Far from the medium the solutions of the Helmholtz
equation (1.3) have the form

En+(F,0) = & %n(x,y), (1.4)



1.1. CLASSICAL ELECTRODYNAMICS 3

y /
| |
X | !

| [

z | |/

Figure1.1: A long waveguidethat isopen at both ends and containsthe disordered
dielectric medium over alength L (dotted region).

with wave number k = w/c. Theinteger n=1,2,...,N isthe mode index, and
on(X,Y) is the corresponding transverse mode profile. The total number N of
propagating modes is given by N ~ A/ 2 for cross-sectional area A and wave-
length » = 2t/k. (If we would count the polarisations of the electromagnetic
field, the number N would be twice as large.) Evanescent waves (solutions with
imaginary k) do not play arole far from the dielectric medium.

A wave at frequency w incident on the medium from the left can be represen-
ted by

N
Ef,0)=) cMEns(0), (1.5)
n=1

with complex coefficients c!™-. Similarly, a wave reflected from the medium at
the left has the form

N
Ef,0)=) "™ En_(F,0). (1.6)
n=1

In the same way we can introduce coefficients ™R and cQR for incoming and
outgoing waves at the right of the medium (see Fig. 1.2).
The coefficientsfor incoming and outgoing waves arerelated by alinear trans-

Cin,L B -— Cin,R

Cout, L «—mm _— Cout, R

Figure 1.2: Incoming and outgoing waves are described by four sets of complex
coefficients ¢,. The coefficients for incoming and outgoing waves are related by
the scattering matrix.
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Figure 1.3: The scattering matrix S can be decomposed into transmission matrices
(t and t) and reflection matrices (r andr”’).

formation,

out,L

( Cl out,L

out,R
,...,CN

LR ,c,?,”t'R)T: S-(cM,...,eqt, ek, ,ci,\r,"R)T )
The 2N x 2N-matrix Sis called the scattering matrix Frequently we will adopt
the convention that modes 1,...,N are to the left of the sample and modes N +
1,...,2N totheright. We can write Eq. (1.7) in ashort-hand form,

¢t = sdn. (1.8)

Thisisthe input-output relation for classical waves.
The scattering matrix S can be decomposed into N x N submatrices (see
Fig. 1.3), the reflection matrices r and r’, and the transmission matrices t and

t/,
r t’
S— <t ) ,) ) (1.9)

For a time-reversal invariant system, S equals its transpose ST, thusr =rT,
r'= r’T, andt =t'". In contrast to electronic systems, where time-reversal sym-
metry is easily broken by a magnetic field, time-reversal symmetry is very diffi-
cult to break for optical systems. In the absence of absorption or amplification,
hencefor areal dielectric constant, current conservation dictatesthat Sisaunitary
matrix (S equals the unit matrix 1). Thisimplies additional relations between
reflection and transmission matrices.

1.2 Quantisation of the electromagnetic field

1.2.1 Wave equation

In a quantum mechanical description the electric field E(F,t) is an operator in
Heisenberg representation, canonically conjugate to the vector potential A(r,t).
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(We assume the Coulomb gauge, in which E = —3 A/at, and as before treat the
case of ascalar wave.) The canonical commutation relationis

~ ~ ih
[EF.0), AT D] = —6(F —F) . (1.10)
€0
In Fourier representation,

E(F,t) = \/%_K /0 dow E(F, )" +H.c., (1.12)

vyhere H.c. stands for Hermitian conjugate. The frequency dependent operators
E(r,w) do not have any simple commutation relation.

The Helmholtz equation (1.3) for the classical fields carries over to the oper-
ators,

R 2 R . he” F
AE(F,0)+ 26, 0)EF,0) = f[,0)—= he'r,w) (1.12)
c c 7T

but with an additional fluctuating source on the right-hand side [Gru96a, Mat95,
Mat97]. It describes the effects of spontaneous emission, that are not included
in the classical wave equation. The operators f satisfy the bosonic commutation
relations

[f(F,0), {1, 0)] =8F —F)8(w— ), (1.13)
[f(F,0), f(f",«)] =0. (1.14)

These commutation relations ensure that the solution of the wave equation (1.12),
Fourier transformed into the time domain, satisfies the original commutation re-
lations (1.10).

1.2.2 Input-output relations

The representation (1.5) of an incoming (or outgoing) classical wave in terms of
asum over modes carries over to the operators,

N
Ef,0)=) &M En:(,0), (1.15)
n=1

but now instead of complex coefficients c,, we have operators &,. These are anni-
hilation operators, their Hermitian conjugates & being creation operators. They
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satisfy the bosonic commutation relations

[8%(w), 85T ()] = Snmb(w — '), (1.16)
[&)(»),&}()] =0, (1.17)

where x standsfor “in” or “out”, and the mode indices range from 1 to 2N. Cre-
ation (or annihilation) operators for incoming states commute among themselves,
as do the operators for outgoing states, but creation operators for incoming states
do not commute with creation operators for outgoing states.

The same scattering matrix Sthat related the incoming and outgoing classical
waves now relates the incoming and outgoing creation or annihilation operators,

aM=5.a"+U . .b+V.&", (1.18)

but there are two additional fluctuating source terms. These sources represent the
effects of thefluctuating sourceterm f in the wave equation (1.12). The operators
b and ¢ satisfy bosonic commutation relations, just like the operators ™ and 4°.
This implies a relationship between the matrices U, V and the scattering matrix
S

uut—vvi=1-s9. (1.19)

Eq. (1.19) represents the fluctuation-dissipation theorem for this problem. In an
absorbing system, the matrix product S is sub-unitary, hence V can be set equal
to0andUUT =1 — SS. Inan amplifying system, S is super-unitary, hence U
canbesetequatoOand VVT=Sg —1.

1.3 Photodetection

A photodetection experiment provides information on the quantum mechanical
state of the electromagnetic radiation. It playsa central rolein thisthesis.

1.3.1 Statistical description

A photodetector absorbs n photons within atime interval t. If this experiment is
repeated many times with the same incident light field, a sequence of fluctuating
values of the photocount n will be generated. The photocount distribution p(n)
gives the probability that n photons are detected. It has the moments

nk = i n“p(n) . (1.20)
n=0
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We also introduce the factorial moments

nW=n-(n=1)-(n—2)---(N—k+1). (1.21)

In particular, n® =7 and n® =n2—A.

Cumulants are constructed from the moments and the factorial moments in
the usual way. For example, the second cumulant (or variance) is n2 — 2 and
the second factorial cumulant isn®@ — [n(M]2, (The first cumulant equals the first
factorial cumulant equals the mean n.) Cumulants are convenient to characterise
a Gaussian distribution, because only the first two are non-zero. Factorial cumu-
lants are convenient to characterise a Poisson distribution, because only the first
iS non-zero.

It is useful to work with generating functions. The moment generating func-
tion Fy, is defined by

= iy |
Fn(§)=€n=>) &"p(n)=> % ne. (1.22)
n=0 p=0 "’

In a similar manner the factorial moments can be generated from the factorial
moment generating function F¢, defined by

o0 o0 p
FE) = W+ p() = 3 on®. (123

n=0 p=0 "’

Note the relation Fr,(£) = Fr(ef — 1).

The logarithm of the moment generating function generates the cumulants,
and the same applies to the factorial moments and factorial cumulants. If we
denote by «, the pth factorial cumulant, then

o0

InFi()=Y "‘I’j iy (1.24)

p=1

1.3.2 Photocount distribution

Inthelimit t — oo of along counting time, we may assume a frequency resolved
measurement within an interval A = 2w/t around some frequency wp = pA. We
assumethat all outgoing modes at one end of the waveguide are detected with unit
efficiency by the photodetector (see Fig. 1.4). For simplicity we assume in this
introduction that there is no outgoing radiation at the other end of the waveguide,
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out —

a
a.OUt._>
N

Figure 1.4: A photodetector absorbs the photonsin modesk = 1,..., N within a
timet.

so that the scattering matrix has dimension N x N instead of 2N x 2N. The
operator of the photocount is

N
A=Y (wp)a (wp) . (1.25)
=1

n

[Because we have discretised the frequency, the commutation relation
(8] (wp), &m(wq)] = Snmdpg NOW contains a Kronecker delta s instead of a delta
function é(wp — wq).]

The moments are nP = (fAP), where (- - -) indicates a quantum mechanical av-
erage over the state of the electromagnetic field. The moment generating function
is

Fmn(&) = (1) . (1.26)

We can write this as a normally ordered expectation value (: - - - :), where normal
ordering meansthat all creation operators are moved to the left of the annihilation
operators. We use the identity

(€88 = (exp[(€ —Da"a] ), (1.27)
valid for any bosonic operator 4. Hence
Fm(€) = ( exp[(¢ — DA] 1) . (1.28)
The factorial moment generating function is thus given by
Fi(§)=(:€"). (1.29)

Thisisfor asingle frequency w, = pA. Since different frequencies are inde-
pendent, the generating function factorises,

N

Fi(e) = [ ]t exp[e Y a8 (wp)ad™(wp)] o) - (1.30)

p n=1



1.4. APPLICATIONS 9

By taking the logarithm, and converting 3, — [dw/A = (t/2n) [ dw, we find
the factorial cumulant generating function in the long-time limit,

InFi(8) = 5= / doIn(: exp| gzw*(w)an“t(w) (1.31)

There existsamore general formuladueto Glauber, Kelley, and Kleiner [Gla63,
Kel64], that is valid for arbitrary counting timest, and for detection efficiencies
oy different from unity. The photocount operator becomes

dt/ / do / do’ Za gt =) gout ()30 (5)') | (1.32)

and the factorial moment generating function Fs(&) = (: €":), just asin Eq. (1.29).
The corresponding probability to count m photonswithin timet is given by

p(m )— — (AMe My . (1.33)

It looks like a Poisson distribution, but it is not because fi is an operator and not a
c-number.

1.4 Applications

1.4.1 Black-body radiation

As afirst simple application we consider the case of black-body radiation. A
black body is characterised by complete absorption, so S=0andU =1,V =0.
The operator % can therefore be identified with the operator bn. The black body
isin thermal equilibrium at temperature T. The average of the operators b is

(B ()b (")) = 8d(w — o) f (0, T), (1.34)

with f(w, T) the Bose-Einstein function,

f(w,T) = |:exp(kha_;_) 1}1 , (1.35)

aso referred to as the Planck function in this context. Higher moments follow
from the factorisation rule of Gaussian averages,

b b Z]_[ Bi, o) (1.36)

o k=1
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whereo is apermutationAof theintegers 1,2,..., M.
Substituting &°* — b in Eq. (1.31) and carrying out the Gaussian averages,
we find

InFe(e) = -tN‘;—‘j‘T’ln[l—gf(w,T)], (1.37)

where we have assumed a frequency resolved measurement in an interval Sw
around w. The corresponding probability distribution can be reconstructed from

the inversion formula
n

. 1d
() = lim, S FiE) (1.38)

The result is known as a negative binomial distribution,
p(n) = (”*‘r’\_l) w0, T2+ f(0,T)] . (1.39)

The quantity v = Ntdw/27 is the number of degrees of freedom of the distribu-
tion.
The mean and variance of the photocount are given by

n=vf(o,T), (1.40)
varn = vf (o, T)[1+ f(o,T)] =ﬁ(1+g). (1.41)

This is Einstein’s formula of black-body radiation [Ein09]. For a Poisson pro-
cess the variance would be equal to the mean. That would apply to uncorrelated
classical particles. Because of Bose statistics the variance is bigger by a factor
1+n/v. Thisiscalled photon bunching. The source of correlationsistheindistin-
guishability of the particles. It has no classical analogue. In atypica black body
the factor 1+ /v is closeto 1, because /v = f « 1. For example, f ~ 1073
at optical frequenciesand T = 3000K, and f ~ 1072 at infrared frequencies and
room temperatures. Much larger effects of photon bunching can be achieved in
an amplifying medium, as we will discuss shortly.

1.4.2 Grey-body radiation

Thisthesisisabout mediathat are not a black body, hence for which the scattering
matrix S# 0. If the medium is still in thermal equilibrium it is sometimes called
a‘“grey body”. The generalisation of Eq. (1.37) to grey-body radiation is [Bee98]

Ian(s):—tgz—:lndet[]l—(]l—s§)sf(w,T)]. (1.42)
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The mean photocount is given by
_ tw
n=2—f(a),T)tr(]l—S§). (1.43)
T

Thisis Kirchhoff’slaw of thermal radiation [Kir60]. The variance can be written
in the form

varn =(1+-"-), (1.44)
eff

with ve the effective number of degrees of freedom,

v [tr(1 = SS)*

v Ntr(1-SS)2 ~ (1.49)

A grey body has asmaller number of degrees of freedom (at agivenvalueof N, t,
and dw) than ablack body. Intermode scattering is essential for this: Thereisno
reduction if N = 1 or if Sisdiagonal. Thiswill be a recurrent theme throughout
this thesis. The interplay between absorption (or amplification) and intermode
scattering causes a qualitative change in the state of the radiation and hencein the
photodetection statistics.

1.4.3 Linear amplifier

A linear amplifier can be described as a system in thermal equilibrium at a negat-
ive temperature [Jef93, Mat97]. The effective temperature T < 0 isfixed by the
degree of population inversion of the pair of atomic levels (with separation hwo)
responsible for the amplification by stimulated emission at frequency wg. If the
mean number of atomsin the upper (lower) state is Nygper (Niower), then

1
f= [exp( heoo ) _ 1} __ Nupper (1.46)

kBTeff B Nlower - Nupper .

A complete population inversion (Njower = 0) correspondsto T approaching
zero from below and f — —1. The quantity f for an amplifying mediumis also
referred to as the population inversion factor. Now we can understand why the
effects of photon bunching are so much more pronounced in an amplifying me-
dium than in an absorbing medium: f can be of order unity at room temperature
for amplification, while f <« 1 for absorption.
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Theformulasfor grey-body radiation carry over to alinear amplifier, with the
above definition of f. For example, the mean photocount is still given by

ﬁ:w—wftr(1—8§). (1.47)
27

It is positive, asit should, because f < 0 at negative temperature but also tr(1l —
S9) < 0 (because Sis super-unitary in an amplifying medium). The reduction of
the number of degrees of freedom remains given by Eq. (1.45).

1.5 Random-matrix theory

To evaluate the photocount distribution of a given system we need to know its
scattering matrix. In principle, that requires a solution of the classical wave equa-
tion, which in general can only be done numericaly. In a random medium the
scattering matrix depends sensitively on the location of the scattering centra. Itis
therefore natural to ask not for the scattering matrix of a given system, but for the
statistical distribution of the scattering matrix in an ensemble of random media
with different locations of the scattering centra.

Random-matrix theory is the theoretical tool than can give this information
[Meh90, Bee97, Guh9g]. It applies not only to random media, but more generally
to systemsin which scattering is chaotic. Chaotic scattering can result from ran-
domly placed impurities, but it can also result fromirregul arly shaped boundaries.
In fact, even scattering from simple regular shapes can lead to chaos. An example
of acavity with chaotic scattering is shownin Fig. 1.5.

In ray optics one can characterise chaotic scattering by the exponential diver-
gence of rays starting at the same point in space in almost the same direction. In

170mm

Figure 1.5: Cavity in which the scattering is chaotic. The dimensions are for the
microwave cavity used in Ref. [Alt97].
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Figure 1.6; Comparison of the spacing of modes in the microwave cavity of
Fig. 1.5 with Wigner's surmise (1.48) [solid line] and the Poisson distribu-
tion (1.49) [dashed ling]. The mean level spacing has been set to A = 1, and
non-chagtic “bouncing-ball” modes have been eliminated from the experimental
histogram. From Ref. [Alt97].

wave optics one should look at the spacing in frequency of cavity modes. Cha
otic scattering leads to mode repulsion, meaning that the probability P(s) to find
a spacing s much smaller than the mean spacing A vanishes linearly with s. In
contrast, for non-chaotic, or regular scattering P(s) tends to a non-zero constant
fors— 0.

Random-matrix theory represents the spectrum of a chaotic cavity by the ei-
genvalues of area symmetric matrix H with independent, Gaussian distributed
elements [Boh84]. The distribution of the spacings is then given by Wigner's
surmise [Wig56],

P(s) o se™ /447 (1.48)
In contrast, for regular scattering the spectrum is represented by independent ei-
genvalues (notindependent matrix elements). The distribution of spacingsisthen
the Poisson distribution

P(s) x e %4 . (1.49)

In Fig. 1.6 we show the experimental data[Alt97] for a chaotic microwave cavity
that confirms Wigner’'s surmise.
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1.5.1 Gaussian ensemble

The ensemble of random matrices H introduced in the previous subsection to
describe a chaotic cavity is called the Gaussian ensemble. Itsdistribution is

P(H) cexp(—atrH?) . (1.50)

The coefficient a = M(1t/A)? is determined by the mean spacing A of the modes
and by the dimension M of the matrix H. (Wetake M — oo at the end of the
calculation.) By integrating out the eigenvectors, one arrives at the distribution of
the eigenval ues,

PH{En}) < [ JIE — EjI [ [exp(—aEf) . (151)
k

i<j

The term |E; — E;| is the Jacobian for the change of variables from matrix ele-
ments to eigenvalues. It is responsible for the level repulsion discussed in the
previous subsection.

The eigenvectors constitute the matrix U that diagonalisess H =
U diag(Ey1, E»,...,Em)U L The matrix U is orthogonal, UUT = 1. (For that
reason the ensemble of H is also called the Gaussian orthogonal ensemble; if
H is complex Hermitian, instead of real symmetric, the matrix U is unitary, in-
stead of orthogonal, and one speaks of the Gaussian unitary ensemble.) In the
limit M — oo the elements of U become approximately uncorrelated Gaussian

Figure 1.7: Comparison of the Porter-Thomas distribution (1.52) [dashed ling]
with the intensity distribution measured on the two-dimensional microwave cavity
shown in theinset. From Ref. [Kud95].
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distributed with zero mean and variance 1/ M. The corresponding distribution of
the (normalised) intensity | = M|Upm|? is known as the Porter-Thomas distribu-
tion [Por65],

1
P(I) x —e7'2. 1.52
(1 NG (152)
Like Wigner's surmise, it has been verified experimentally, see Fig. 1.7.

1.5.2 Circular ensemble

A cavity can be coupled to the outside via an opening connected to a waveguide
supporting N propagating modes (see Fig. 1.8). We introduce the waveguide
as a theoretical device to obtain a finite-dimensional (N x N) scattering matrix
S. Qualitatively the results should be the same as without a waveguide, if one
replaces N by the area A of the opening divided by A2/ .

Scattering inside the cavity remains chaotic if the opening to the outside is
sufficiently small. The mean dwell time tgwe =~ 1/NA of a photon inside the
cavity should be long compared to the ergodic time g required for exploration
of the chaotic phase space. In practice thisis satisfied if the linear dimension of
the opening is small compared to the linear dimension of the cavity.

From a random-matrix theory for H we can create a random-matrix theory
for S. The matrices Sand H arerelated by [Ver85]

1

W
H—-ho—itWWH "’
Winn= 7t Y28n m=1...,M, n=1,...,N. (1.54)

Sw) =1 —2rxiW'

(1.53)

The resulting scattering matrix is unitary (because of flux conservation) and sym-
metric (because of time-reversal symmetry). The Gaussian ensemble for H im-

Figure 1.8: A chaotic cavity is connected to the outside by a waveguide. The
dynamics can be chaotic due to scattering at randomly placed scattering centra
(Ieft) or due to the shape of the cacity (right).
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Figure 1.9: Poles of the scattering matrix in the complex frequency plane. In
the absence of amplification, all poleslie in the lower half of the complex plane
(left). Amplification shifts the poles upward by an amount 1/2t, (centre). The
lasing threshold is reached when the first pole hitsthe real axis (right).

pliesthat at any fixed frequency w, the matrix Sis uniformly distributed [Bro95],
P(S) = constant , (1.55)

among the unitary symmetric N x N matrices. The distribution (1.55) represents
the circular (orthogonal) ensemble.

The effects of absorption or amplification with rate 1/t4 are included in
Eq. (1.53) by

1

=1—2niw’ w,
@) T T ho—imWW /25,

(1.56)

where the + sign is for amplification and the — sign for absorption. Causality
requires that all the poles of S(w) liein the lower half of the complex plane (i. e,
they should have a negative imaginary part). This is guaranteed if there is no
amplification. Amplification pushes the poles upward by an amount 1/, (see
Fig. 1.9). We have reached the laser threshold when the first pole crosses the real
axis. Then the linear theory presented here breaks down.

1.5.3 Disordered waveguide

Imagine connecting many chaotic cavities in series, via segments of N-mode
waveguides (see Fig. 1.10). Scattering in this structure is still chaotic, but the
dwell time is in general not long enough to explore the entire available phase
space. Most photons will explore only a fraction of the total length L of the
structure. This represents a theorist’'s model for a waveguide geometry contain-
ing randomly placed scattering centra. In fact, one can show rigorously that the
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N

N

Figure 1.10: A series of chaotic cavities (top) is statistically equivalent to a dis-
ordered waveguide (bottom) provided the latter allows the same number N of
propagating modes as the waveguides connecting the cavities. (For the series of
cavities the mean free path is of the order of the linear dimension of the cavity.)

physics on long enough length scales (long compared to the mean free path I) is
the same as for a true waveguide [Guh98].

The circular ensemble of the scattering matrix of oneindividual cavity allows
one to construct the probability distribution of the scattering matrix of the entire
structure. The result does not have a simple form (see Ref. [Bee97] for areview),
so here we will restrict ourselves to a qualitative discussion of the three transport
regimes.

e For L <| thesampleisballistic. Scattering can be neglected and the trans-
mission probability T through the waveguideis close to unity.

e Forl <L < NI the sampleis diffusive. The transmission probability de-
creases linearly with length, T ocl/L. Thisregime exists only for N > 1.
(Thereis no diffusive regime in a single-mode waveguide.)

e For L 2 NI localisation takes place. The transmission probability drops
exponentially oc exp(—L /&ioc) Where &oc >~ NI isthe localisation length.

In Fig. 1.11 we show the length dependence of the transmission probability
through a disordered waveguide, computed by solving the Helmholtz equation
numerically on atwo-dimensional square lattice. We see the diffusive regime of
linearly decreasing T followed by the localised regime of exponential decrease.
The plot also shows another distinguishing feature of the diffusive and localised
regimes. The relative fluctuations of T are much larger in the localised regime
than in the diffusive regime. In the diffusive regime the root-mean-squared value
of the fluctuations is smaller than the mean transmission probability by a factor
1/+/N. Inthelocalised regimethe fluctuations are of the same order of magnitude
as the mean.
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Figure 1.11: Numerically computed transmission probability T through a dis-
ordered waveguide allowing N = 25 propagating modes. The approximation
1/T ~ 1+ L/l isvaid in the diffusive and ballistic regimes L < NI (top), the
approximation T oc exp(—L /&jc) isvalidinthelocalised regime L 2 NI (centre).
The top two panels are averages over many realisations of the disorder. The bot-
tom panel is for asingle realisation.Fluctuations are small in the diffusive regime
and increase in the localised regime.
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1.6 Random laser and Petermann factor

Althoughin thisthesiswewill not go beyond the laser threshold, our investigation
was motivated by experiments on so called “random lasers’ [Wie95]. We discuss
the differences with “traditional lasers’ in this section.

A traditional laser consists of a pumped, amplifying medium that is sand-
wiched between two mirrors (see Fig. 1.12, left). One of the two mirrors has a
nonvanishing transmission probability y so that the light generated in the medium
can escape. The mirrors have two effects. Firstly, they lower the lasing threshold
by increasing the average time spent by a photon in the amplifying medium. If L
isthe length of the laser, the effective length becomes L & >~ 2L /3. Lasing occurs
if the amplification rate 1/t exceeds c/L«, hence when L exceeds the critical
length L >~ 2y cta.

Secondly, the mirrors create narrow cavity modes that are responsible for
a narrow linewidth I" of the laser (much smaller than the amplification band-
width). The quantum-limited linewidth is given by the Schawlow-Townes for-
mula[Sch58]

rg
=30
where | isthe outgoing intensity (in photons/sec) and 'y >~ ¢/ L« is the width of
the lasing cavity mode.

In a random laser (Fig. 1.12, right), feedback is due to multiple scattering
within the medium instead of being due to mirrors. For a medium with mean
free path | (diffusion constant D = %cl) the typical time spent by a photon in
the medium is L?/D, so that the effective length becomes L ~ 3L2/1. The
critical length is now L. ~ /Dt.. Such a mirrorless laser was first proposed
by Letokhov [Let67] as a mechanism for laser action in interstellar clouds. The
first laboratory experimentswere carried out very recently [Cao99], see Fig. 1.13.
An important distinction with traditional lasersis that the width I'y of the cavity

Figure 1.12: In a traditional laser (left) mirrors at the ends of the amplifying
medium reflect most of the intensity back into the medium. In a random laser
(right) this feedback is provided by multiple scattering with disorder inside the
medium.

(157)

Sw




20 CHAPTER 1. INTRODUCTION

| [a ul]

O r—T——T 7T T T T T T 1
0.08 - —
0.06 —
0.04 - —
0.02 -

0 | | | | |
-25-20-15-10 -5 0 5 10 15 20 25

w/A

Figure 1.13: Top: Frequency dependence of the intensity | = A(Ntdw/27) ~* of
the radiation from arandom laser, as measured by Cao et a. [Ca099]. The system
consists of ZnO power film of thickness 5um, moderately pumped by aNd:YAG
laser. Bottom: Intensity calculated from Egs. (1.47) and (1.56), with f = —1
(complete populationinversion), N = 5, and aL orentzian frequency profilefor the
amplification ratewithwidth 54 and maximum 1/7,= A /40x. Inthe experiment
the medium was above the laser threshold, whilein the calculation it was below so
the comparison is not complete. (A complete comparison would requireinclusion
of the non-linear effects of mode competition.)
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modes in a random laser isin general much larger than their spacing A, because
the confinement by disorder is not as effective as the confinement by mirrors.
(Theratio I'y/A is of order NI/L, which istypically > 1.) Overlapping cavity
modes lead to an increase of the laser linewidth above the Schawlow-Townes
value (1.57), by an amount known as the Petermann factor K [Pet79, Sie89a,
Sie89b],

2
Iy

So=K=C
@=07

(1.58)
Random-matrix theory is well suited to calculate the statistics of the Petermann
factor in arandom laser.

1.7 About this thesis

We conclude the introduction with an overview of the topics treated in thisthesis.

Chapter 2: Excess noise for coherent radiation propagating through
amplifying random media

Classically asignal can be amplified by an arbitrary factor without a deterioration
of the signal-to-noise ratio. This is reflected in the classical input-output rela
tion (1.8). Quantum-mechanically amplification introduces additional noise into
the system — as demanded by the fluctuation-dissipation relation (1.19) and the
gquantum input-output relation (1.18).

A coherent state is the closest quantum-optical equivalent to a classical light
beam. Itsfluctuations have Poisson statistics, asfor independent classical particles.
If we areinterested in the quantum-optical effects of interaction between light and
an amplifying medium, a coherent state is thus the most obvious starting point.

Chapter 3: Propagation of squeezed radiation through amplifying or
absorbing random media

After having examined the propagation of “classical” coherent radiation, the lo-
gical next step is an extension to states of the radiation field that are nonclassical
by nature. Nonclassical statestypically have an intensity noisethat is smaller than
for independent classical particles, a phenomenon referred to as “squeezing” of
the state. The intensity fluctuations are “ squeezed” (=reduced) at the expense of
the phase fluctuations — which become larger.
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In the previous chapter we have seen that a quantum-mechanical treatment in-
troduces additional noiseinto the radiation field. This noise does not discriminate
between intensity and phase and hence destroys the squeezing of the radiation, in
away which wewill calculate.

Chapter 4: Photon shot noise of localised waves

The previous two chapters deal with the photodetection statistics of a disordered
waveguide in the diffusive transport regime. The localised regimeis addressed in
Chapter 4. We calculate the noise power, which is proportiona to the variance of
the photocount distribution. For Poisson statistics the noise power P equals the
meancurrent .

The ratio P/1 is known as the Fano factor. We show that, for a coherent
incident beam, the Fano factor reaches a universal limit of 1+ g f oncethelength
of the waveguide exceeds the absorption length. Localisation has no effect on
this limiting value. This is the optical analogue of the universal % suppression
P/l — %) of the shot noise in electronic systems [Bee92, Nag92].

Chapter 5: Long-range correlation of thermal radiation

So far we have considered the photocounting statistics measured by a single pho-
todetector. The bosonic nature of the radiation leads to correlations in the pho-
tocount of two different photodetectors. This effect was discovered by Hanbury-
Brown and Twiss [HB56], who used it to measure the angular aperture of a star.
(The degree of corréation is sensitive to the aperture, even if the aperture cannot
be resolved directly.) The correlation of radiation from a black body disappearsif
the detectors are separated by more than a coherence length. We have found that
for agrey body aresidual long-range correlation remains, that is negligibly small
for the radiation from a star, but might well be observable in alaboratory setting.

Chapter 6: Quantum limit of the laser linewidth in chaotic cavities

We have introduced the notion of the Petermann factor in Sec. 1.6, as the excess
noise of a laser due to overlapping cavity modes. Another, equivalent way of
saying thisisthat the excess noiseis dueto non-orthogonality of the cavity modes.
In the final chapter of this thesis we develop a complete theory for the statistical
distribution of the Petermann factor in achaotic cavity coupled to the outsideviaa
small opening. The Petermann factor isfound to scale as /N, with N the number
of modes radiating through the opening.



Chapter 2

Excess noise for coherent radiation
propagating through amplifying
random media

2.1 Introduction

The coherent radiation emitted by a laser has a noise spectral density P equal
to the time-averaged photocurrent |. This noise is called photon shot noise, by
analogy with electronic shot noise in vacuum tubes. If the radiation is passed
through an amplifying medium, P increases more than | because of the excess
noise due to spontaneous emission [Hen96]. For an idea linear amplifier, the
(squared) signal-to-noise ratio 12 /P drops by afactor of 2 as one increases the
gain. One saysthat the amplifier has anoise figure of 2. Thisis alower bound on
the excess noise for alinear amplifier [Cav82].

Most calculations of the excess noise assume that the amplification occursin
a single propagating mode. (Recent examples include work by Loudon and his
group [Jef93, Mat97].) The minimal noise figure of 2 refers to this case. Gen-
eralisation to amplification in a multimode waveguide is straightforward if there
is no scattering between the modes. The recent interest in amplifying random
media [Wie97] calls for an extension of the theory of excess noise to include
intermode scattering. Here we present such an extension.

Our central result isan expression for the probability distribution of the photo-
count interms of the transmission and reflection matricest andr of the multimode
waveguide. (Thenoisepower P isdetermined by the variance of thisdistribution.)
Single-mode results in the literature are recovered for scalar t and r. In the ab-

23
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Figure 2.1: Coherent light (thick arrow) is incident on an amplifying medium
(shaded), embedded in a waveguide. The transmitted radiation is measured by a
photodetector.

sence of any incident radiation our expression reduces to the known photocount
distribution for amplified spontaneous emission [Bee98]. We find that intermode
scattering strongly increases the excess noise, resulting in a noise figure that is
much larger than 2.

We present explicit calculations for two types of geometries, waveguide and
cavity, distinguishing between photodetection in transmission and in reflection.
We also discussthe parallel with absorbing media. We use the method of random-
matrix theory [Bee97] to obtain the required information on the statistical proper-
ties of the transmission and reflection matrices of an ensemble of random media
Simple analytical resultsfollow if the number of modes N islarge (i.e., for high-
dimensional matrices). Close to the laser threshold, the noise figure & exhibits
large sample-to-sample fluctuations, such that the ensemble average diverges. We
compute for arbitrary N > 2 the distribution p(¥) of & in the ensemble of dis-
ordered cavities, and show that # = N is the most probable value. Thisis the
generalisation to multimode random media of the single-mode result & = 2 in
the literature.

2.2 Formulation of the problem

We consider an amplifying disordered medium embedded in a waveguide that
supports N(w) propagating modes at frequency w (see Fig. 2.1). The amplifica-
tion could be due to stimulated emission by an inverted atomic population or to
stimulated Raman scattering [Hen96]. A negative temperature T < O describes
the degree of population inversion in the first case or the density of the material
excitation in the second case [Jef93]. A complete population inversion or van-
ishing density corresponds to the limit T — O from below. The minimal noise
figure mentioned in the introduction is reached in this limit. The amplification
rate 1/7, is obtained from the (negative) imaginary part ¢” of the (relative) dielec-
tric constant, 1/t, = w|e”|. Disorder causes multiple scattering with rate 1/t and
(transport) mean free path | = cts (with ¢ the velocity of light in the medium).
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We assume that t5 and 1, are both > 1/w, so that scattering as well as amplifica-
tion occur on length scales large compared to the wavelength. The waveguide is
illuminated from one end by monochromatic radiation (frequency wo, mean pho-
tocurrent 1p) in a coherent state. For simplicity, we assume that the illumination
isin asingle propagating mode (labelled mg). At the other end of the waveguide,
a photodetector detects the outcoming radiation. We assume, again for simpli-
city, that all N outgoing modes are detected with equal efficiency «. The case of
single-mode detection is considered in Appendix 2.A.

We denote by p(n) the probability to count n photons within atime z. Its
first two moments determine the mean photocurrent | and the noise power P,
according to

S E(F—ﬁz) . 2.2)
T T—>00 T
[The definition of P isequivalentto P = ffooo dts1(0)sl(t), withsl =1 — | the

fluctuating part of the photocurrent.] It is convenient to compute the generating
function F (&) for the factorial cumulants «;, defined by

Fe) =3 =]y erp)]. (22
j:l ' n=0

Onehasn = k1, F =x2+x1(1+«1).

The outgoing radiation in mode n is described by an annihilation operator
a%(w), using the convention that modes 1,2,..., N are on the left-hand side of
the medium and modes N 4 1,...,2N are on the right-hand side. The vector a®*
consists of the operators af,ad",. .. ,a%!. Similarly, we define a vector a'” for
incoming radiation. These two sets of operators each satisfy the bosonic com-
mutation relations

[8n(@),ah()] = Snmd(@ — @), [8n(®),8m(@)] =0, (2.3)
and are related by the input-output relations [Jef93, Mat95, Gru96b]
a% () = Sw)a"(w) + V(o) (w) . (2.4)

We haveintroduced the 2N x 2N scattering matrix S, the 2N x 2N matrix V, and
the vector ¢ of 2N bosonic operators. The scattering matrix S can be decomposed
into four N x N reflection and transmission matrices,

S= <rt i) . (2.5)
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Reciprocity imposes the conditionst’ =tT,r =rT,andr’ =r'".

The operators ¢ account for spontaneous emission in the amplifying medium.
They satisfy the bosonic commutationsrelation (2.3), which implies that
VVi=sS-1. (2.6)
Their expectation values are
(Cn(@)ch(@)) = =8nmd(@ — @) f (@, T), 27)
with the Bose-Einstein function
f(w,T) = [exp(ho/ ke T) - 1] (2.8)

evaluated at negative temperature T (< 0).

2.3 Calculation of the generating function

The probability p(n) that n photons are counted in atime t is given by [Gla63,
Kel64]

1
p(n) = o Whe Wy (2.9)

where the colons denote normal ordering with respect to a®*, and

2N

W=qa / "t 3 a(hadt), (2.10)
0 n=N+1

a%(t) = (2n) Y2 / ooolwe—iwtag“t(w). (2.12)
0

The generating function (2.2) becomes
FE) =In¢e":). (2.12)

Expectation values of a normally ordered expression are readily computed
using the optical equivalence theorem [Man95]. Application of this theorem to
our problem consistsin discretising the frequency in infinitesimally small steps of
A (sothat wp = pA) and then replacing the annihilation operators al'(wp), C(wp)
by complex numbers a}]”p, Cnp (or their complex conjugates for the corresponding
creation operators). The coherent state of the incident radiation correspondsto a
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non-fluctuating value of ajy}, with a2 = Snmydpp,2tlo/A (With wo = poA). The
thermal state of the spontaneous emission corresponds to uncorrelated Gaussian
distributions of the real and imaginary parts of the numbers cpp, with zero mean
and variance ((Recnp)?) = ((IMcnp)?) = —3 f (wp, T). (Notethat f < Ofor T <
0.) To evaluate the characteristic function (2.12) we need to perform Gaussian
averages. The calculation is described in Appendix 2.B.

The result takes a simple form in the long-time regime w.t > 1, where w is
the frequency within which S(w) does not vary appreciably. We find

F(£) = Foc(t) — % /ooo Indet[1 —a&f (1 —rr T —tt"]do, (2.13)

Fec(£) = a7y (tT [1—agf(l—rr' —ttT)]‘lt) , (2.14)

MoMo

where det(- - - ) denotesthe determinant and (- - - ) mym, the mg,mo element of amat-
rix. In Eq. (2.14) the functions f, t, and r are to be evaluated at w = wp. The
integral in Eq. (2.13) is the generating function for the photocount due to amp-
lified spontaneous emission obtained in Ref. [Bee98]. It is independent of the
incident radiation and can be eliminated in a measurement by filtering the output
through a narrow frequency window around wo. The function Fec(¢) describes
the excess noise due to the beating of the coherent radiation with the spontaneous
emission [Hen96]. The expression (2.14) isthe central result of this chapter.

By expanding F (¢) in powers of & we obtain the factorial cumulants, in view
of Eg. (2.2). In what followswe will consider only the contribution from Fec(§),
assuming that the contribution from the integral over » has been filtered out as
mentioned above. We find

i = Kla e o [T —rr T =t 1] (2.15)

mpmg ’
where again w = wg isimplied. The mean photocurrent | = «1/t and the noise
power P = (k24 «1)/t become

I_= aIO(tTt)momo ’ P - I_+ P@(C ’

Poc = 22 f o [tT(L —rr T —tt")t] (2.16)

memgp *

The noise power P exceeds the shot noise I_by the amount Pgyc.

Theformulas above are easily adapted to ameasurement in reflection by mak-
ing the exchanger — t’,t — r’. For example, the mean reflected photocurrent is
| =alp(r ar "momg» While the excess noise is

Pexc = 202 f Io[r"T(1 —r'rT —t'tyr'] (2.17)

momg
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2.4 Noise figure

The noise figure ¥ is defined as the (squared) signal-to-noise ratio at the input
12/ Po, divided by the signal-to-noise ratio at the output, 12/ P. Since Py = I for
coherent radiation at the input, one has & = (Pexc+ 1 )10/14, 12, hence

thrr Tt -t Tttt 14 2af
o oy, _L+20f (2.18)

(tTt)rznomo o (tTt)momo

The noise figure is independent of |o. For large amplification the second term
on the right-hand side can be neglected relative to the first, and the noise figure
becomes also independent of the detection efficiency «. The minimal noise fig-
ure for given r and t is reached for an ideal detector (@ = 1) and at complete
populationinversion (f = —1).

Since (t7rr Tt 4+ttt ) memy = 2ol mokl? + 20 (T mekl? = (1717, ONE
has # > —2f for large amplification [when the second term on the right-hand
side of Eqg. (2.18) can be neglected]. The minimal noisefigure ¥ = 2 at complete
population inversion is reached in the absence of reflection [(t r)mx = 0] and
in the absence of intermode scattering [(t t)m = O if k # mg]. Thisis realised
in the single-mode theories of Refs. [Jef93, Mat97]. Our result (2.18) generalises
these theories to include scattering between the modes, asisrelevant for arandom
medium.

These formulas apply to detection in transmission. For detection in reflection
one hasinstead

(rth/t/Tr/+r/Tr/r/Tr )m o l+20[f

(r/T )momo a(r/Tr/)momo .

Again, for large amplification the second term on the right-hand side may be neg-
lected relative to the first. The noise figure then becomes smallest in the absence
of transmission, when ¥ = —2f(r''r e ’Tr’)momo(r ’)gjgmo > —2f. The min-
imal noisefigure of 2 at complete population inversion requires(r ''r s ’Tr’)momo =
(r''r My ﬁ] mo» Which is possible only in the absence of intermode scattering.

To make analytical progressin the evaluation of %, we will consider an en-
semble of random media, with different realisations of the disorder. For large N
and away from the laser threshold, the sample-to-sample fluctuations in numerat-
ors and denominatorsof Egs. (2.18) and (2.19) are small, so we may average them
separately. Furthermore, the “equivalent channel approximation” is accurate for
random media [Mel92], which says that the ensemble averages are independent

F =-2f

(2.19)



2.5. APPLICATIONS 29

of the mode index mg. Summing over mg, we may therefore write ¥ asthe ratio
of traces, so the noise figure for a measurement in transmission becomes

<tr(tTrr Tt +tTttTt)>- 1+ 2uf

, 2.20
<trtft-2 a=<trtft= (2.20)

F=-2fN

and similarly for a measurement in reflection. The brackets <--- >~ denote the
ensemble average.

2.5 Applications

2.5.1 Amplifying disordered waveguide

As afirst example, we consider a weakly amplifying, strongly disordered wave-
guide of length L. Averages of the moments of rr T and tt™ for this system have
been computed by Brouwer [Bro98] as a function of the number of propagating
modes N, the mean free path |, and the amplification length £, = /D1t,, Where
1/t istheamplification rateand D = cl /3 isthe diffusion constant. It is assumed
that 1/N « 1 /&;3 < 1 but theratio L /&, = s is arbitrary. In this regime, sample-
to-sample fluctuations are small, so the ensemble average is representative of a
single system.

N
o
w
o

Figure 2.2: Noisefigure of an amplifying disordered waveguide (Iength L, ampli-
fication length &,) measured in transmission (solid line) and in reflection (dashed
line). The curves are computed from Egs. (2.21)—(2.24) fora =1, f = -1, and
L/l = 10. Thelaser thresholdisat L /&5 = .



30 CHAPTER 2. PROPAGATION OF COHERENT RADIATION ...

The results for a measurement in transmission are

—  4al S
| = —Ig——, 2.21
3L ’sins ( )
202 3 2s—cotans scotans—1 S
Pexc = flos| — — + — . 2.22
ee=3L 0 <sms sin’s sin’s sin“s) (222)
For a measurement in reflection, one finds
— 4
| =alg| 1— —scotans | , 2.23
alo(1- 3 scotans) 29
202 1 cotans scotans—1 s
P@(c=a—flos<200tans— 1 oo ns-1 s ) (2.2
3L sins  sin‘s sin®s sin's

The noise figure  follows from F = (Pec + I_)Io/l_z. It is plotted in Fig. 2.2.
Onenotices astrong increasein & on approaching the laser threshold at s = .

2.5.2 Amplifying disordered cavity

Our second example is an optical cavity filled with an amplifying random me-
dium. The radiation leaves the cavity through a waveguide supporting N modes.
The formulas for a measurement in reflection apply with t = 0 because there
is no transmission. The distribution of the eigenvalues of r 'r is known in the
large-N limit [Bee99] as a function of the dimensionless amplification rate y =
21 /N1Aw (With Aw the spacing of the cavity modes near frequency wg). The
first two moments of this distribution are

1
N~i<trrrs= —, (2.25)
1-y
2y2 -2y +1
N~ <trrTrr Tr>= % (2.26)
(1-v)
The resulting photocurrent has mean and variance
I =alg , (2.27)
1-vy
2
y—y- -1
Pexc = 202 f 1oy Zrt—= 2.28
exc o oY (1—V)4 ( )
The resulting noisefigurefor« =1and f = —1,
1— 2 3
Fo—_rrvye (2.29)

1-y)
is plotted in Fig. 2.3. Again, we see a strong increase of & on approaching the
laser threshold at y = 1.
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Figure 2.3: Noise figure of an amplifying disordered cavity, connected to a pho-
todetector viaan N-mode waveguide. The curveisthe result (2.29), asafunction
of the dimensionless amplification rate . (Idea detection efficiency, « = 1, and
full population inversion, f = —1, are assumed in this plot.) The laser threshold
occursat y = 1.

2.6 Near the laser threshold

In the preceding section we have taken the large-N limit. In that limit the noise
figure diverges on approaching the laser threshold. In this section we consider the
vicinity of the laser threshold for arbitrary N.

The scattering matrix S(w) has polesin the lower half of the complex plane.
With increasing amplification, the poles shift upward. The laser threshold is
reached when a pole reaches the real axis, say at resonance frequency wy,. For
 near wy, the scattering matrix has the generic form

OnOm

= , 2.30
Sm w—wth—l—%iF—i/Zra ( )

where oy, is the complex coupling constant of the resonance to the nth mode in
the waveguide, I' is the decay rate, and 1/, the amplification rate. The laser
thresholdisat I'ta = 1.

We assume that the incident radiation has frequency wo = wyn. Substitution of
Eqg. (2.30) into Eq. (2.18) or (2.19) givesthe simple result

|Umo|2 ,

_2fx 2N
F=—"= 2= lonl, (2.31)
n=1
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for the limiting value of the noise figure on approaching the laser threshold. The
limit is the same for detection in transmission and in reflection. Since the coup-
ling constant |om, |2 to the mode mg of the incident radiation can be much smaller
than the total coupling constant X, the noise figure (2.31) has large fluctuations.
We need to consider the statistical distribution p(#) in the ensemble of random
media. Thetypical (or modal) value of ¥ isthe value Fiy, at which p(¥) is max-
imal. We will see that thisremains finite although the ensembl e average < # > of
F diverges.

2.6.1 Waveguide geometry

Wefirst consider the case of an amplifying disordered waveguide. Thetotal coup-
ling constant X = X + X, isthe sum of the coupling constant X = Zr'?'=1|an|2 to
the left end of the waveguide and the coupling constant =, = Y21, ., |on|? to the
right. The assumption of equivalent channelsimplies that

1
<1/ For=———=<X/X>=

2fN T 4fN (2.32)

Since the average of 1/ is finite, it is reasonable to assume that Fiyp ~
<1/F>"1=—-4f N, or Fiyp ~ 4N for complete populationinversion. Thescaling
with N explainswhy thelarge-N theory of the preceding section found adivergent
noisefigure at thelaser threshold. We concludethat thedivergency of & at L /§,=
nt in Fig. 2.2 is cut off at avalue of order N, if # isidentified with the typical
value Fiyp.

2.6.2 Cavity geometry

In the case of an amplifying disordered cavity, we can make a more precise state-
ment on p(F). Since thereis only reflection, thereisonly one X = Zr'?':1|an|2.
The assumption of equivaent channels now gives

1

1/ Fr=———. 2.33

<VFm=75 (2:33)

Following the same reasoning asin the case of the waveguide, wewould conclude

that Fryp ~<1/F ="1= —2f N. Wewill seethat thisis correct within afactor of
2.

To compute p(F) we need the distribution of the dimensionless coupling con-

stantsu, = an/\/f. The N complex numbersu, form avector U of length 1. Ac-

cording to random-matrix theory [Bee97], the distribution p(S) of the scattering
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Figure 2.4: Probability distribution of the noise figure near the laser threshold for
an amplifying disordered cavity, computed from Eqg. (2.36) for f = —1. Themost
probablevalueis # = N, while the average value diverges.

matrix isinvariant under unitary transformations S— U SUT (withU an N x N
unitary matrix). It follows that the distribution p() of the vector G is invariant
under rotations i — U, hence

p(ul,uz,...,uN)o<8(1—2|un|2). (2.34)

In other words, the vector i has the same distribution as a column of a matrix that
isuniformly distributed in the unitary group [Per83]. By integrating out N — 1 of
the un’s we find the marginal distribution of U,

N—-1 N—2
P(Umo) = —— (1 Uml?) ™, (2.35)
for N > 2 and |um,|? < 1.
The distribution of F = —2f |upm,| 2 becomes
2f\N2
p(F)=-2f(N-1) <l+ ?) F2, (2.36)

for N >2and ¥ > —2f. We have plotted p(F) in Fig. 2.4 for complete popu-
lation inversion (f = —1) and severa choices of N. It isa broad distribution, all
its moments are divergent. The typical value of the noise figure is the value at
which p(#’) becomes maximal, hence

Fyp=—1IN, N>2. (2.37)
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Inthe single-mode case, in contrast, ¥ = —2f for every member of the ensemble
[hence p(¥) = §(F +2f)]. We concludethat the typical value of the noisefigure
near the laser threshold of a disordered cavity is larger than in the single-mode
case by afactor N/2.

2.7 Absorbing media

The general theory of Sec. 2.2 can aso be applied to an absorbing medium, in
equilibrium at temperature T > 0. Eq. (2.4) then hasto be replaced with

a®(w) = S@)a"(@) + Q(w)b(w), (2.38)
where the bosonic operator b has the expectation value
(b} (@)brm(@)) = 8nmd (@ — @) f (@, T) (2.39)
and the matrix Q isrelated to Shby
QQ'=1-s9. (2.40)

Theformulasfor F (&) of Sec. 2.3 remain unchanged.

Ensemble averages for absorbing systems follow from the corresponding res-
ultsfor amplifying systems by substitution t, — —1,. Theresultsfor an absorbing
disordered waveguide with detection in transmission are

—  dal S

| = — 241

3L “sinhs’ (241)
202 3 2s+cotanhs scotanhs—1 s

Poc = — flos| —— — - + , (242

==L (smhs sinh?s sinh®s sinh“s) (242

wheres = L /&, with &, the absorption length. Similarly, for detectionin reflection
one has

— 4
I :alo<l—3—Lscotanhs> , (2.43)
202 1 cotanhs scotanhs—1 S
Poe = —— flgs | 2cotanhs — — — — - - + — )
we=3L ° < snhs  sinh?s sinh®s sinh*s
(2.44)

These formulas follow from Eqgs. (2.21)—(2.24) upon substitution of s — is.
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Figure 2.5: Excess noise power P for an absorbing (solid line, left axis) and
amplifying disordered waveguide (dashed line, right axis), in unitsof «?l| f |1o/L.
The top panel is for detection in transmission, the bottom panel for detection in
reflection.
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Figure 2.6: Excess noise power Pg for an absorbing (solid line, |eft axis) and
amplifying disordered cavity (dashed line, right axis), in units of «?| f |lo.

For an absorbing disordered cavity, we find [substituting y — —y in
Egs. (2.27) and (2.28)],

| =alg (2.45)

1+y "’
y2+y+1

T (2.46)

Pocc = 202 f lgy
with y the dimensionless absorption rate.
Sincetypicaly f « 1in absorbing systems, the noise figure ¥ is dominated
by shot noise, ¥ ~ lg/1. Instead of F we therefore plot the excess noise power
Pexc inFigs. 2.5 and 2.6. In contrast to the monotonic increase of Pe with 1/75in
amplifying systems, the absorbing systems show a maximum in Pec for certain
geometries. The maximum occurs near L /£, = 2 for the disordered waveguide
with detection in transmission, and near y = 1 for the disordered cavity. For
larger absorption rates the excess noise power decreases because | becomes too
small for appreciable beating with the spontaneous emission.

2.8 Conclusion

In summary, we have studied the photodetection statistics of coherent radiation
that has been transmitted or reflected by an amplifying or absorbing random me-
dium. The cumulant generating function F (&) is the sum of two terms. The first
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term isthe contribution from spontaneous emission obtained in Ref. [Bee98]. The
second term Fec is the excess noise due to beating of the coherent radiation with
the spontaneous emission. Equation (2.14) relates Fec to the transmission and
reflection matrices of the medium.

In the applications of our general result for the cumulant generating function
we have concentrated on the second cumulant, which gives the spectral density
Pecc Of the excess noise. We have found that Pey increases monotonically with
increasing amplification rate, while it has a maximum as a function of absorption
ratein certain geometries.

In amplifying systems we studied how the noise figure ¥ increases on ap-
proaching the laser threshold. Near the laser threshold the noise figure shows
large sample-to-sample fluctuations, such that its statistical distribution in an en-
semble of random media has divergent first and higher moments. The most prob-
able value of ¥ is of the order of the number N of propagating modes in the
medium, independent of material parameters such as the mean free path. 1t would
be of interest to observe this universal limit in random lasers.

2.A Single-mode detection

We have assumed throughout this chapter that all N modes propagating through
the waveguide are detected at either the left or the right end. At the opposite
extreme one can consider the case of single-mode detection. This s particularly
relevant in a slab geometry, where the cross-sectional area of the photodetector
is much less than the area of the random medium (see Fig. 2.7). The number of
detected modes is then much smaller than the number of modes N propagating
through the medium. The limit of single-mode detection is reached when the

—R——

Figure 2.7 Schematic diagram of detection of radiation propagating through a
slab. Single-mode detection occurs when the area of the photodetector becomes
lessthan R?/N.
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photodetector covers an area comparabl e to the area of one speckle or smaller.

Single-mode detection of thermal radiation was considered in Ref. [Bee98].
Denoting the detected mode by the index ng, the mean photocurrent was found to
be

— *® dw
lthermal = / 2_ Jthermal (w) ) (2-47)
0 T
jthermal (w) =af (]l —Ir T ttT)nono ) (2-48)
and the noise power
*® dw .
P = [ 5 Fhama(@) (249)
0 il

In this case of single-mode detection the noise power contains no information
beyond what is contained in the photocurrent.

The same holds for the excess noise considered in this chapter. The mean
transmitted photocurrent in a narrow frequency interval around wg is given by

| = alo)tngm, |2 (2.50)
and the excess noise

Poc=2 |_J thermal (wO) (2-51)

is simply the product of the mean transmitted photocurrent and thermal current
density. Noise measurements in single-mode detection are thus not nearly asin-
teresting as in multi-mode detection, since the latter give information on the scat-
tering propertiesthat is not contained in the mean photocurrent.

2.B Derivation of Eqg. (2.14)

To evaluate the Gaussian averages that lead to Eq. (2.14), it is convenient to use
amatrix notation. We replace the summation in Eq. (2.10) by a multiplication of
the vector a®" with the projection 2a°", where the projection matrix & has zero
elementsexcept Pnn =1, N+ 1< n< 2N. Wethuswrite

W=« / dta®t (t) Pat(t) . (2.52)
0
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Insertion of Egs. (2.4) and (2.11) gives

=< ' ooa) Oow’ in () St (w o)V (@
W_ZK/Odt/Od /Od [2" () S () + c(@)V ()]
x P[S(w)a (@) + V (@)c! (@) ]g@ " . (2.53)

Asexplained in Sec. 2.3, we discretise the frequency asw, = pA, p=1,2,3,....
Theintegral over frequency is then replaced with a summation,

/ dog(w) > A d(wp). (2.54)
0 p=1
We write Eq. (2.53) as a matrix multiplication,
EW = a" Aa" +cBc +a" CTel +-ccdn, (2.55)

with the definitions
AAE [T TS (o) P A(p-p)t
Anprp = on 5 dt [S (wp)F S(wp/)]nn/e ,

aAE [T i A(p—p’
Brpnp = ?,/0 dt |:\/T(a)p)°(P\/(wp/)]nn’ gaempx , (2.56)

aAE [T o
Coprp = ?/0 dt [V (wp)? Swp)],,, €PN,
aan = Al/ZaLn(wp) ’ Cnp — Al/ZCn(a)p) ]

We now apply the opticad equivaence theorem [Man95], as dis
cussed in Sec. 23. The operators aﬁ]”p are replaced by constant numbers
Snmodpm (2t 10/A)Y2. The operators cnp, are replaced by independent Gaussian
variables, such that the expectation value (2.12) takes the form of a Gaussian in-
tegral,

np
:/d{Cnp}exp[a‘”*Aai”—cMc*+a‘”*CTc*+cCai”] . (257
where we have defined

oS
Mnpn'p = — Brprrpr — ?szgy . (2.58)
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We eliminate the cross-terms of a'™ and ¢ in Eq. (2.57) by the substitution

/%

c*=c—M~tca", (2.59)
leading to

eV :exp[a‘”*(A—i—CTM1C)ai”]/d{c’np}exp(—c/Mc’*) . (2.60)

The integral is proportional to the determinant of M2, giving the generating
function

F(£) = const—IndetM +a™ (A+CTM~IC) a"

|o

2
= const—IndetM + —— (A+C'M~1C) (2.61)

Mo po,MopPo *

The additive constant follows from F(O) = 0. The term —Indet M is the con-
tribution from amplified spontaneous emission calculated in Ref. [Bee98]. The
term proportional to |y is the excess noise of the coherent radiation, termed Feyc
in Sec. 2.3.

Eqg. (2.61) can be simplified in the long-time regime, wct > 1. We may then
set A =2n/t and use

/ dAPPldt = 25,y . (2.62)
0
The matrices defined in Eg. (2.56) thus become diagonal in the frequency index,
aATéE
A = 5= [S(@p) P S(9) o o (269
and similarly for B and C. We then find
afA

(A+C"M™IC)pprp = [sTO(n +atfVVIP)IS| sy, (264)

21
where f, S, and V are evaluated at w = wp. Substitution into Eq. (2.61) givesthe
result (2.14) for Fexc(§).

Simplification of Eq. (2.61) is aso possible in the short-time regime, when
27 < 1, with £2. the frequency range over which SS' differs appreciably from
the unit matrix. The generating function thenis
ot

Fexc(g)zasﬂo[tf(wo) 11——/ do f (0, T)

X []l —r (o) () - t(a))tT(w)])ilt (a)o)] . (2.65)

MoMo



Chapter 3

Propagation of squeezed radiation
through amplifying or absorbing
random media

3.1 Introduction

Squeezed radiationisin astatein which one of the quadratures of the electric field
fluctuates |ess than the other [Wal94, Man95]. Such anonclassica state is useful,
because the fluctuationsin the photon flux can be reduced bel ow that of a Poisson
process — at the expense of enhanced fluctuations in the phase. Sub-Poissonian
noiseis adelicate feature of the radiation, it is easily destroyed by the interaction
with an absorbing or amplifying medium [Hen96]. The noise from spontaneous
emission eventsis responsible for the degradation of the squeezing.

Because of the fundamental and practical importance, there exists a consid-
erable literature on the propagation of squeezed and other nonclassical states of
light through absorbing or amplifying media. We cite some of the most recent pa-
person thistopic [Leo93, Jef94, Sch96, Bar98, Art99, Knt99, Abd99]. Themain
simplification of these investigations is the restriction to systems in which the
scattering is one-dimensional, such as parallel dielectric layers. Each propagating
mode can then be treated separately from any other mode. It is the purpose of
the present paper to remove this restriction, by presenting a general theory for
three-dimensional scattering, and to apply it to a medium with randomly located
scattering centra.

This chapter builds on the previous one, in which we considered the propaga-
tion of a coherent state through such a random medium. Physically, the problem

41
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considered hereis different because a coherent state has Poisson noise, so that the
specific nonclassical features of squeezed radiation do not arise in Ch. 2. Tech-
nically, the difference is that a squeezed state, as most other nonclassical states,
lacks a diagonal representation in terms of coherent states [Wal94, Man95]. We
cannot therefore directly extend the theory of the previous chapter to the propa-
gation of squeezed states. The basic idea of our approach remains the same: The
photodetection statistics of the transmitted radiation is related to that of theincid-
ent radiation by means of the scattering matrix of the medium. The method of
random-matrix theory [Bee97] is then used to evaluate the noise properties of the
transmitted radiation, averaged over an ensemble of random media with different
positions of the scatterers.

The outline of this chapter is as follows. In Sec. 3.2 we first summarise the
scattering formalism, and then show how the characteristic function of the state
of the transmitted radiation can be obtained from that of the incident state. This
allows us to compute the photocount statistics as measured in direct detection
(Sec. 3.3), and in homodyne photodetection measurements (Sec. 3.4). The ex-
pressions in Secs. 3.2-3.4 are generally valid for any incident state. In Sec. 3.5
we specialise to the case that the incident radiation isin an idea squeezed state
(also known as a squeezed state of minimal uncertainty, or as atwo-photon coher-
ent state [Wal94, Man95]). The statistics of direct and homodyne measurements
are expressed in terms of the degree of squeezing of the incident state. The Fano
factor, introduced in Sec. 3.6, quantifies the degree to which the squeezing has
been destroyed by the propagation through an amplifying or absorbing medium.
The ensemble average of the Fano factor is then computed using random-matrix
theory in Sec. 3.7. We concludein Sec. 3.8.

3.2 Scattering formulation

We consider an amplifying or absorbing disordered medium embedded in awave-
guide that supports N(w) propagating modes at frequency w. The conceptual
advantage of embedding the medium in awaveguideis that we can give a scatter-
ing formulation in terms of a finite-dimensional matrix. The outgoing radiation
in mode n is described by an annihilation operator a%(w), using the conven-
tion that modes 1,2,...,N are on the left-hand-side of the medium and modes
N +1,...,2N are on the right-hand-side. The vector a®! consists of the operat-
orsa,ad", ... al. Similarly, we define avector a™ for incoming radiation.
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These two sets of operators each satisfy the bosonic commutation relations
[an(®), a1 (@)] = nmd(@ — ), [an(w),am(@)] =0. (3.1)
They arerelated by the input-output relations [Jef93, Gru96b, Bee98]

a™(») = w)a"(®) + Q(@)b(w) , (3.29)
a® () = w)a"(w) + V(o) (w), (3.2b)

wherethefirst equation isfor an absorbing medium and the second for an amplify-
ing medium. We have introduced the 2N x 2N scattering matrix S, the 2N x 2N
matrices Q and V, and the vectors b and ¢ of 2N bosonic operators. The scat-
tering matrix can be decomposed into four N x N reflection and transmission

matrices,
r’t
S:( t r ) . (3.3)

Reciprocity imposes the conditionst’ =t7,r =rT,andr’ =r'".

The operators b and ¢ account for spontaneous emission in the medium. They
satisfy the bosonic commutation relations (3.1), hence

QQ'=1-s8, vv'=sS-1. (3.4)
Their expectation values are

(b} (@)bm(@)) = Snmé(@ — @) (@, T), (3.59)
(Cr(w)C! (@) = —8nmd(w — ) (0, T). (3.5h)

The Bose-Einstein function
f(w,T) = [exp(ho/ ke T) — 1] " (3.6)

is evaluated at positive temperature T for an absorbing medium and at negative
temperature for an amplifying medium.

It is convenient to discretise the frequency in infinitesimally small steps of
A, so that wp = pA, and treat the frequency index p as a separate vector index
(in addition to the mode index n). For example, ajy' = af"(wp) and Shpnp =
S (@p)dpp-
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The state of the outgoing radiation is described by the characteristic function

Xouln) = (: exp( AM2 Y [a8" (wp)n(@p) — ny(wp)al(@p)])

n,p
= ( exp[AY2(@ Ty —pta™)] 1) (3.7)

where (; - - - ;) indicates the expectation value of anormally ordered product of op-
erators a® and a®" (creation operators to the left of the annihilation operators).
The vector n has elements 1, = nn(wp). The density operator of the outgoing ra-
diation is uniquely defined by the characteristic function y o, [Wal94]. Similarly,
the incoming state has characteristic function

xinn) = (: exp[AY2(@" 7 — yTal")] ) (38)
The characteristic function of the thermal radiation inside an absorbing medium
is given by

xabs(n) = (: exp[AY2(b'y —n'b)] 1) = eXIO(— > o fep, T)’?np)
n,p

=exp(—n'fn). (3.9

Inthefinal equality f denotesthe matrix with elements fnp vy = Snwdpp f(wp, T).
For an amplifying medium, replacing b by ¢’ and normal ordering by anti-normal
ordering, one finds instead

Xamp(n) = exp(n' ) . (3.10)

Combination of Egs. (3.2) and (3.4) with Egs. (3.7-3.10) yields arelationship
between the characteristic functions of the incoming and outgoing states,

Xou(n) = exp(—n"[1 - SS]f7) xin(S'n) . (3.11)

This relation holds both for absorbing and amplifying media, because the differ-
encein sign in the exponent of Egs. (3.9) and (3.10) is cancelled by the difference
insign between QQ'=1-SSandVV'= —(1 —S9).

3.3 Photocount distribution

The photocount distribution is the probability p(n) that n photons are absorbed
by a photodetector within a certain time r (see Fig. 3.1). The factorial cumulants
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Figure 3.1: Schematic illustration of direct detection: Radiation isincident on a
random medium (shaded). The transmitted radiation is absorbed by a photode-
tector.

kj of p(n) (the first two being k1 =N and k2 = n(n—1) — n°) are most easily
obtained from the generating function [Man95]

FE) = K’J—fl = In(Z(l—i—é)” p(n)) . (3.12)
j=1

n=0

The generating function is determined by a normally ordered expectation
value [Glab3, Kel64],

. 2N
FO_ Wy, W= / at Y da ). (313)
0 n=1

Hered, € [0, 1] isthe detection efficiency of the nth mode and the time-dependent
operators are defined as

ad(t) = (2m)~Y/2 / ~ dweio a(w) . (3.14)
0

Discretising the frequencies as described in Sec. 3.2, one can write
AZ T ” )
= — (p—p)t joutt outr
W= 2n/o dtzn:d”%e' ag" (wp)ad(wp) - (3.15)

This expression can be simplified in the limit  — oo of long counting times,
when one can set A = 21t/ and use

/0 APt = 75, . (3.16)

Hence, in the long-time limit the generating function is given by
@ = exp(sAZdnaS“”(wp)aS“t(wp)) ) = ( exp a2 Da™) 1)
n.p

(3.17)
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where we have defined the matrix of detector efficiencies Dnpnp = Ohdnrpp -
Comparing Egs. (3.7) and (3.17) we see that the generating function F (¢) can
be obtained from the characteristic function x o by convolution with a Gaussian,

eF ) —

m/

where [dn is an integration over the real and imaginary parts of . We now
substitute the relation (3.11) between xout and xin, to arrive at a relation between
F (&) and xin:

1
1 Xout(n) €Xp <gnTo‘Dln) : (3.18)

@__ L+ ; .
gF (¢ deten cD)/dr})(.n(sn)exp(S D —nT1 - S§)fn) (3.19)

The fluctuations in the photocount are partly due entirely to thermal fluctu-
ations, which would exist even without any incident radiation. If we denote by
Fin(£) the generating function of these thermal fluctuations, then Eq. (3.19) can
be written in the form

F (&) = Fol@)+In| g [ dnanen(-n'm )], (@20
Fin(¢) = —Indet[1 —£D(1 — SS)f]. (3.21)

We have defined the Hermitian matrix
M=—¢S[1—£D(1-SS)f] DS, (3.22)

and we have performed a change of integration variables from » to S™y [with
Jacobian det(S S)].

The expression (3.21) generalises the result of Ref. [Bee98] to arbitrary
detection-efficiency matrix £. Returning to a continuous frequency, it can be
written as (recall that A = 27/7)

Fn(€) = —% /0 b da)lndet(]l —£D[1 - S)S'(@)] f(w,T)) . (3

where D isa2N x 2N diagonal matrix containing the detection efficienciesd,, on
the diagona (Dnm = dnénm). Thefirst two factorial cumulants are

* dw
K= ¢ /0 P f (o, T)tr D[1 - S(w)S'(w)], (3.24)

* dw
i = 1/0 - f%(w, T)tr (D[1 — S(a))ST(a))])Z . (3.25)
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Note that all factorial cumulants depend linearly on the detection time 7 in the
long-time limit.

If only the N modes at one side of the waveguide are detected (with equal
efficiency d), thend, =0for 1 <n< Nandd,=d for N+1<n< 2N, hence

Fin(€) = _Zi/ da)lndet(]l —&d[1 =1 () () —t()t ()] f(w,T)) ,
T Jo
(3.26)
in agreement with Ref. [Bee99].
Thedifference F (¢) — F(¢) contains the noise from the incident radiation by
itself as well as the excess noise due to beating of the incident radiation with the
vacuum fluctuations. If the incident radiation isin a coherent state, then xin(n) =

exp(e:'n — n'a) for some vector o (called the displacement vector) with elements
anp = an(wp). Substitution into Eq. (3.20) gives the generating function

F(&) = Fn(€) —a"Ma,

= Fu@)+ 3+ [ doa’@S@)[1 -£D[1 - SIS @] florT)]

x DY w)a(w) . (3.27)
Thefirst two factorial cumulants are
Ki=T / g—“’oﬁ (@) S' () D w)ar(w) + 1", (3.28)
0 T

Ko = 2T /0 b g—: f(0,T)a'()S'(©) D[1 — o) S'(w)]|D Hw)a(w) + K3 .
(3.29)

If the incident coherent radiation is in a single mode mg and monochromatic
with frequency wo, then Egs. (3.27-3.29) simplify for detection in transmission
to

F() = Fth(s)—i-tsdIo<tT[]l—Sd(]l—rrT—ttT)f(a)o,T)]_lt) . (3.30)

i1 = lotd[t t]mom, + 1", (3.31)
* dw

it = 7d /0 o f (o, T)tr[L —r (w)r T(w) — t()t'(»)] (3.32)

K2 = 2lotd?f (wo, T) [t —rr T —ttNt]  +&l, (3.33)

MoMo

h_2°°d_w2 —wTa)—a)Twz
K;_zd/O > @ D11 (@)@ -t @], (3.34)
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Here I = (271)~* /;” dw||? is the incident photon flux and the matricesr and t
without frequency argument are to be evaluated at frequency wg. These are the
results of Ch. 2.

3.4 Homodyne detection

The photocount measurement described in Sec. 3.3 (known as direct detection)
cannot distinguish between the two quadratures of the electric field. Such phase
dependent information can be retrieved by homodyne detection, i.e. by superim-
posing a strong probe beam (described by operators aP*®) onto the signal beam
(see Fig. 3.2). The total radiation incident on the detector is described by the
operator

gtotal — ,1/250ut +(1- K)l/Zaprobe , (3.35)

where the factor /k accounts for the attenuation of the signal beam by the beam
splitter that superimposes it onto the probe beam. (For simplicity we assume a
real scalar k, more generally « would be a complex coupling matrix.)

The characteristic function of a'®@ s the product of the characteristic func-
tions of a® and aP"®, We assume that the probe beam is in the coherent state
with displacement vector 8, having elements Bnp = Bn(wp). From Eq. (3.11) one
gets

Xtota(n) = &Xp[—ien' (1 = SS) fn+ (L) 2(B™n—n"B)] xin(S'c ) .
(3.36)

The generating function Fpomo(£€) of the photocount distribution in homodyne de-

Figure 3.2: Schematic illustration of homodyne detection: At the left, radiation
isincident on a random medium (shaded). At the right, a strong coherent beam
is superimposed onto the transmitted radiation, and the combined radiation is ab-
sorbed by a photodetector.
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tection is given by [cf. Eq. (3.17)]
expl Fromo(£)] = (- exp(§ 42T Da'*) ;)

~ expl£(1— )BT DB\ eXp(Al/Z\/K(l— E[a D+ ﬂ*i)awt]) 3
(3.37)
In the second approximate equality we have linearised the exponent with respect
toa®, whichisjustified if the probe beam is much stronger than the signal beam.

The remaining expectation value has the form of a characteristic function if we
take & purely imaginary, sothat £* = —&. Theresultis

Fromo(€) = £(1— k)BT DB +1n xou(v/k (1 — k)& DB)
=£(1—x)BTDB+rk(1—k)e*BTDA -SS)fDB

+Inxin(Vxk(1—x)ESTDB). (3.39)

In the second equation we have substituted the relation (3.11) between y o and
Xin-

3.5 Squeezed radiation

We consider the case that the incident radiation is in the ideal squeezed state
le,a) = C4]0) [Wal94, Man95], obtained from the vacuum state |0) by sub-
sequent action of the sgueezing operator

8 =exp[3A@"e*a" - a‘“Tea‘”T)] (3.39)
and the displacement operator

int

C =exp[AY4@" a —a'a")]. (3.40)

As in the previous sections, we have discretised the frequency, wp = pA, and
used the vector of operators an, = a'(wp). The complex squeezing paramet-
ers en(w) = pn(w)d?@ are contained in the diagonal matrix ¢ with elements
enpn'p = €n(@p)dnnpp . Similarly, the vector o with elements anp = an(wp) con-
tains the displacement parameters.

The characteristic function of theincident radiationis given by [Wal 94, Yue76]

xin(n) = exp[oﬁn —n'a—1nT(e7? sinh2p)n — 1" (e sinh2p)n*

(s nth)n] . (341)
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According to Eqg. (3.11), we thus find for the characteristic function of the outgo-
ing radiation

1 .
Xout(n) = exp <aTSTn —n'Su — ZnTS*(e_"PSinhZ,o)STn

—%nTS(é"’sinth)STn* — [ f — S(f —sinth)sT]n) . (342

The generating function F(¢) of the photocount distribution is obtained from
xin Dy convolution with a Gaussian, cf. Eq. (3.18). Wefind

T
o _ Ma
F©) = Fole) - ndex - 19 ) x 3Gl ) a4y
wherethe matrix X isdefined in terms of the matrix M by
_ M sinhp —Mé? coshp snhp 0O
X_]H_( —M*e¥coshp  M*sinhp )( 0 sinhp - (344)

If squeezing is absent, p = 0, hence X = 1 and Eq. (3.43) reduces to the res-
ult (3.27) for coherent radiation. For a squeezed vacuum (o = Q) one has simply
F (&) = Fn(§) — 3 Indet X.

If the radiation isincident only in mode mg, then we may compute the matrix
inverse and the determinant in Eq. (3.43) explicitly. The matrix M(w) defined in
Eq. (3.22) may be replaced by its mgp, mg €lement,

Mmomo(w)zmz—g[sT(n—gD[n—s§]f)‘le] . (3.45)

MoMo

Note that misreal, since it is the diagonal element of a Hermitian matrix. The
resulting generating functionis

~d . .
F(g) = Fth(g)—%r/o %In(1+2msnh2p—mzsmh2p)

/oo da)m| |21+ msinh p[sinh p + coshp cos(2arga — ¢)]
-7 -_— o .
0 2m 1+ 2msinh? p —m2sinh?p

(3.46)
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Thefirst two factorial cumulants, for detection in transmission, are
K1 = i +rd/ (Ial 2 sinh? )t "t momo » (3.47)
K2 = K +21d2/0 (|a|2+sinh2,o)f[tT(]1—rrT—ttT)t]momo
—|—td2/ [t*t]mom0[|acoshp—a*é¢sinhp|2—|a|2
0 +sinh? p(cosh? p +sinh? p)], (3.48)

Where;c and k3 h are given by Egs. (3.32) and (3.34).
The generating function for homodyne detection follows from Egs. (3.38) and
(3.42),

Fromo(€) = §(1—k)B" DB+ £k (1—k)(a'S' DB+ BT D)
— %szx(l—/c)[ﬂﬂ)S"‘(e‘i"’sinth)ST:Dﬂ + BT DS(E? sinh2p) ST Dp*]
+&2%(1—k)pTD[f — (f —sinh?p)S'|DB . (3.49)

All factorial cumulants except for the first two vanish in the strong-probe approx-
imation. We may simplify the generating function by assuming that the signal
beam isincident in a single mode mp and that the probe beam is aso in asingle
mode ng. For detection in transmission one then has the factorial cumulants

k1= d / (1 1812+ 2/« (1— k) Re[aB* tn0m0]> (3.50)
ko =—7ti(1— K)d2/0 2: [,B*ze'd’tnomo]sinth

* dw .
+2m(1—/c)d2/0 glmz[ltnomolzsmth—i— f(L—rrT—tt")nno] . (3.51)

3.6 Fano factor

For the application of these general formulas we focus our attention on the Fano
factor #, defined as the ratio of the noise power P = r~lvarn and the mean
current | =t~

= P/|_= 1+ko/k1 . (352)
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(We have assumed the limit T — o00.) For coherent radiation ¥ = 1, corres-
ponding to Poisson statistics. Thermal radiation has £ > 1 (super-Poissonian).
Nonclassical states, such as squeezed states, can have ¥ < 1.

We assumethat the radiationisincident in asingle mode mg and is detected in
transmission (equal efficiency d per transmitted mode). We consider afrequency-
resolved measurement, covering a narrow frequency interval around the central
frequency wo of the incident radiation. The thermal contributions «{" and «"
may then be neglected, since they are spread out over a wide frequency range.
The incident radiation has Fano factor Fi,, measured in direct detection with unit
efficiency. For squeezed radiation, one has

N la coshp —a*é? sinhp|? — |a|? + sinh? p(cosh? p +sinh? p)

Fn=1
" la|2+sinh? p

. (353)

We seek the Fano factor of the transmitted radiation, both for direct detection
(Fdirect) @nd for homodyne detection (Fromo). Combining Egs. (3.47) and (3.48),
we find for direct detection

[T —rr T =ttt mgme
(tTt)momo

The first term is due entirely to the incident radiation. It is absent for coherent
radiation (because then %, = 0). The second term is due to the beating of the
incident radiation with the vacuum fluctuations. It isindependent of the incident
radiation and was studied in detail in Ch. 2. Sub-Poissonian counting statistics,
i.e. Fairect < 1, isinan amplifying medium (f < —1) only possible when

Fairect — 1= d(tTt)momo(:Fin - 1) +2d f(“)O’T)

. (354)

20"t ") momo < (") me + 2 Dmomo — 27T T mom, - (3.55)

In the absence of reflection (r = 0) and inter-mode scattering (t diagona), this
reduces to the well-known condition [Cav82, Lou84, Ste86] (t Tt)momo < 2. Since
("t ) momo = i [ (T Dmek|? = (tTt)Z,,» the presence of inter-mode scattering
decreases the maximally allowed amplification factor (t Tt)mgm,-

The Fano factor in the strong-probe approximation (|| — oo) follows from
Egs. (3.50) and (3.51), with the result

Fromo — 1 = 2di [thym,|2sinh? p 4 2dic f (wo, T)(M —rr T — ttMnon,
—dk Re[€P~279A)t2  Tsinh2p . (3.56)

In the strong-probe approximation, it is independent of « and |8|. Similarly to
Eq. (3.54), the first term is entirely due to the incident radiation, vanishing for
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coherent radiation (o = 0), and the second term is due the beating with vacuum
fluctuations. The additional third term describes the effect of the phase of the
probe beam on the measurement. Typically, in ameasurement one would vary the
phase of the probe beam until the Fano factor is minimised, which occurs when
argp = 3¢ + agtym,. Theresulting Fano factor 1" is given by

Fmin' — 1 — 2di |thom, %€ sinhp 4+ 2dic f (wo, T —rr T —ttM)nn, . (3.57)

Squeezing in the outgoing radiation for an amplifying medium is only possible
When [tgmg|? < 2—2('r Mngng — Xz, Itnokl 2. The single-mode limit [tom,|? = 2
isthus decreased by both reflection and inter-mode scattering.

3.7 Ensemble averages

The expressions for the Fano factor given in the previous section contain the re-
flection and transmission matrices of the waveguide. These are N-dimensional
matrices that depend on the positions of the scatterers inside the waveguide. The
distribution of these matrices in an ensemble of disordered waveguides is de-
scribed by random-matrix theory [Bee97]. Ensemble averages of moments of rr T
and tt’ for N >> 1 have been computed by Brouwer [Bro98], as a function of the
mean free path | and the amplification (absorption) length £, = /D, Where 1/7,
isthe amplification (absorption) rate and D = cl /3 is the diffusion constant. It is
assumed that both &, and L are small compared to the localisation length NI but
large compared to the mean free path |. Obviously, this requires a large number
N of propagating modes. The relative sizeof L and &, is arbitrary.

As sample-to-sample fluctuations are small for N > 1, we can take in
Eg. (3.54) the averages of numerator and denominator separately. The depend-
ence on the index mg of the incident mode drops out on averaging, (- --)mym, =
N~L(tr...). For an absorbing disordered waveguide, we find

Fairect = 1+ Ald (Fin—21
direct = 3SaSiI’IhS in
d 2s+cotanhs scotanhs—1 S
— f(wo, T)|3— - — . (3.58
5 Heo )[ sinhs sinh?s +sinh3s} (358)

We have abbreviated s = L /&,. Inthelimit of strong absorption, s — oo, the Fano
factor approaches the universal limit Fgret = 1+ 3d f (see Sec. 4.4). The Fano
factor Fi, is given by Eq. (3.53) for an incident squeezed state, but Eq. (3.58) is
more generally valid for any state of the incident radiation.
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Theresult for an amplifying disordered waveguide follows by the replacement
Ta— —Ta, hENCE &y — (&4

4|d
Fairect = 1 Fin—1
direct + 3§asins( in )
d 2s—cotans scotans—1 S
— f(wo,T)|3— : — . (359
—|—2(a)0 )[ sins sin’s sin3s] (359)

The Fano factor diverges at the laser threshold s = wt. Thefunction f (wg, T) now
hasto be evaluated at a negativetemperature. For acomplete population inversion
of the atomic states f — —1.

The minimal Fano factor in homodyne detection is given by Eq. (3.57). The
average (|th,m,|%) is again independent of the mode indices, hence it can be re-
placed by N—2(tr ttT). For an absorbing waveguide we find

Foore =1— %d;nhsep sinhp + 8'32: f(wo, T) [cotanh s+ Wlhs} ,

(3.60)

and for an amplifying waveguide

| |
8ld« ei’OSinhp-l-BdK

?vmin =1— :
homo 3NE,sins 3,

1
f(wo,T) [COtanS_si_ns] . (3.61)

Measurement of the ensemble average #,M" requires that for every sample the
phase of the probe beam is re-adjusted so as to minimise the Fano factor. Thisis
common practice in ahomodyne measurement. If the phase of the probe beamis
fixed, the random phase of t,,m, Will average to zero the third term in Eq. (3.56).
In Egs. (3.60) and (3.61) this amounts to the substitutione™” — —sinhp.

A graphical presentation of the results (3.58)—(3.61) is given in Figs. 3.3—
3.5. For the absorbing case we have taken f = O (appropriate for optical fre-
guencies at room temperature). For the amplifying case we have taken f =
—1 (complete population inversion). The formulas above cannot be used for
L <I. The vaues of Fgirect, Fhomo, and }'hfg,igo for L = 0 can be read off from
Egs. (3.54)~(3.57), Firet — 1+ d(Fin— 1), Fromo = 1+ 28n,m,di sinh?p, and
Fmin’ = 1 — 26n,m,dice sinhp. An extrapolation to L = 0 is shown dashed in
Fig. 3.3.

The common feature of the Fano factors plotted in Figs. 3.3-3.5 is a conver-
gence asthelength of the waveguide becomeslonger and longer. For an absorbing
medium the L — oo limit isindependent of the state of the incident radiation. For
an amplifying medium compl ete convergenceis pre-empted by the laser threshold

at L :nga.
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Figure 3.3: Average Fano factor Firect fOr direct detection as a function of the
length of the waveguide. The left panel is for an amplifying medium [Eg. (3.59),
f = —1], the right panel for an absorbing medium [Eq. (3.58), f = 0]. In both
caseswetook | /&, = 0.1, d = 1, and values of Fj, increasing from 0 to 3in steps
of 0.5. The dotted parts of the curves are extrapolationsin therange L <| that is
not covered by Egs. (3.58) and (3.59).
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Figure 3.4: Average minimal Fano factor for homodyne detection, from
Egs. (3.60) and (3.61). Same parameter valuesasin Fig. 3.3, with N = 10, x = %
and p increasing from O to 1 in steps of 0.25. For L < | the curves extrapolate
eitherto 1 (if ng 2 mg) orto 1— e ? sinhp (if ng = mg). (Thisextrapolationis not
shown in thefigure.)
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Figure 3.5: Average Fano factor for homodyne detection, from Egs. (3.60)
and (3.61) after the substitution e » — —sinhp, otherwise identical to
Fig. 34. For L < the curves extrapolate either to 1 (if ng # mg) or to
1+ sini?p (if ng = my). (This extrapolation is not shown in the figure)
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3.8 Conclusions

In conclusion, we have derived general expressionsfor the photodetection statist-
icsin terms of the scattering matrix of the medium through which the radiation
has propagated. These expressions are particularly well suited for evaluation by
means of random-matrix theory, as we have shown by an explicit example, the
propagation of squeezed radiation through an amplifying or absorbing waveguide.
The sub-Poissonian noise that can occur in a squeezed state (characterised by a
Fano factor smaller than unity) is destroyed by thermal fluctuationsin an absorb-
ing medium or by spontaneous emission in an amplifying medium. The theory
presented here describes this interaction of nonclassical radiation with matter in
aquantitative way, without the restriction to one-dimensional scattering of earlier
investigations.



Chapter 4

Photon shot noise of localised waves

4.1 Introduction

Analogiesin the behaviour of photons and electrons provide a continuing source

of inspiration in mesoscopic physics [Bit99]. Two familiar examples are the

analogies between weak localisation of electrons and enhanced backscattering

of light and between conductance fluctuations and optical speckle [Alt91]. The

basisfor these analogiesisthe similarity between the single-electron Schrodinger

eguation and the Helmholtz equation. The Helmholtz equation isaclassical wave

equation, and indeed the study of mesoscopic phenomenafor light has been lim-

ited mostly to classicaloptics. A common theme in these studiesis the interplay

of interference and multiple scattering by disorder. The extension to quantum
optics adds the interplay with vacuum fluctuations as a new ingredient.

Recently a theoretical approach to the quantum optics of disordered media
was proposed [Bee9g], that utilises the methods of the random-matrix theory of
quantum transport [Bee97, Guh98]. Therandom matrix under considerationisthe
scattering matrix. The basic result of Ref. [Bee98] is a relationship between the
scattering matrix and the photocount distribution. It was applied there to the stat-
istics of blackbody radiation and amplified spontaneous emission. Thiswork was
reviewed in Ref. [Bee99]. Chapter 2 of this thesis discussed the optical analogue
of electronic shot noise. B

Shot noise is the time-dependent fluctuation of the current 1(t) = | +681(t)
(measured in units of particles/s) resulting from the discreteness of the particles.
The noise power

P= /Oo dtST(0)s1(t) (4.)

59
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guantifiesthe size of the fluctuations. (The bar -~ indicates an average over many
measurements on the same system.) For independent particles the current fluctu-
ations form a Poisson process, with power Ppgisson = | equal to the mean current.
The ratio P/ Ppgisson (Called the Fano factor & [Fan47]) is a measure of the cor-
relations between the particles.

For electrons, correlations resulting from the Pauli exclusion principle reduce
P below Ppgisson. (See Ref. [Jon99] for areview.) Theratio P/ Ppgisson iSexpressed
in terms of traces of the transmission matrix t at the Fermi energy by [B(it90]

tr(tt")2
trett

Thisformulaholds at zero temperature (no thermal noise). In the absence of scat-
tering all eigenvalues of the transmission-matrix product tt T are equal to unity,
hence P = 0. This absence of shot noise is realised in a ballistic point con-
tact [KhI87, LesB9]. At the other extreme, in atunnel junction all transmission
eigenvalues are « 1, hence P = Ppyison [Sch18]. A disordered metallic con-
ductor isintermediate between these two extremes, having P = % Proisson [Be€92,
Nag92].

For the optical analogue we consider amonochromatic laser beam (frequency
wp) incident in a single mode (labelled mg) on a waveguide containing a dis-
ordered medium (at temperature T). The radiation from alaser is in a coherent
state. The photostatisticsof coherent radiationisthat of a Poisson process[Man95],
hence P = Ppyisson fOr the incident beam. The question addressed in thiswork is;
How doestheratio P/ Ppsisson Change as the radiation propagates through the ran-
dom medium? We saw that, for electrons, scattering increases this ratio. In con-
trast, in the optical analogue scattering by itself has no effect: P remainsequal to
Ppoisson if theincident beamisonly partially transmitted — provided the scattering
matrix remains unitary. A non-unitary scattering matrix, resulting from absorp-
tion or amplification of radiation by the medium, increases the ratio P/ Ppgisson.
This excess noise can be understood as the beating of coherent radiation with
vacuum fluctuations of the electromagnetic field [Hen96].

Photon shot noise has been studied extensively in systemswhere the scattering
is one-dimensional (for example, randomly layered media) [Jef93, Mat97]. No
formulaof the generality of Eq. (4.2) was needed for thoseinvestigations. |n order
to go beyond the one-dimensional case, we have derived the optical analogue of
Eq. (4.2). Theresultis

[ —rr T =ttt mgme

F =1+2f (w0, T) T
MpMo

, (4.3)
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Figure 4.1: Coherent light (thick arrow) is incident on an absorbing or ampli-
fying medium (shaded), embedded in a waveguide. The transmitted radiation is
measured by a photodetector.

where f(w,T) = [exp(hw/ksT) — 1]~ is the Bose-Einstein function. Eq. (4.3)
contains both the transmission matrix t and the reflection matrix r (evaluated at
frequency wo). For a unitary scattering matrix, rr T +tt" equals the unit matrix
1, hence the term proportional to f in Eq. (4.3) vanishes and P = Ppgison. Ab-
sorption and amplification both lead to an enhancement of P above Ppgisson. FOr
an absorbing system the matrix 1 —rr T —tt" is positive definite and f > 0, so
P/ Prgisson > 1. Inan amplifying system 1 —rr T —tt" is negative definite but f is
also negative (because T < 0in an amplifying system), so P/ Ppoisson iS still > 1.

We will review the derivation of the optical shot-noise formula (4.3), and the
application to absorbing and amplifying disordered waveguides. The amplify-
ing case is of particular interest in view of the recent experiments on random
lasers [Wie97, Can99], which are amplifying media in which the feedback re-
quired for alaser threshold is provided by scattering from disorder rather than by
mirrors.

4.2 Optical shot-noise formula

In this section we summarise the scattering formulation of the photodetection
problem [Bee98], and derive the formula (4.3) for the excess noise. We consider
an absorbing or amplifying disordered medium embedded in a waveguide that
supports N(w) propagating modes at frequency o (see Fig. 4.1). The absorb-
ing medium is in thermal equilibrium at temperature T > 0. In the amplifying
medium, the amplification could be due to stimulated emission by an inverted
atomic population or to stimulated Raman scattering [Hen96]. A negative tem-
perature T < 0 describesthe degree of populationinversion in thefirst case or the
density of the material excitation in the second case [Jef93]. A complete popu-
lation inversion or vanishing density correspondsto the limit T — 0 from below.
The Bose-Einstein function f(w,T)is > 0for T >0and < —1for T <0.1 The

1The quantity f(w,T) is called the “population inversion factor” in the laser literature, be-
causeif w is closeto the laser frequency $2 one can express f = (Niower / Nupper — 1)~tinterms
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absorption or amplification rate 1/t, = w|e”| is obtained from the imaginary part
&” of the (relative) dielectric constant (¢” > 0 for absorption, ¢” < 0 for amplifica
tion). Disorder causes multiple scattering with rate 1/t and (transport) mean free
path | = czs (with ¢ the velocity of light in the medium). The diffusion constant
is D = icl. The absorption or amplification length is defined by &5 = +/Dra.

Thewaveguideisilluminated from one end by monochromatic radiation (fre-
guency wo, mean photocurrent 1g) in a coherent state. For simplicity, we as-
sume that the illumination is in a single propagating mode (labelled mg). At the
other end of the waveguide, a photodetector detects the outcoming radiation. We
assume, again for simplicity, that all N outgoing modes are detected with unit
quantum efficiency. We denote by p(n) the probability to count n photons within
atimet. Itsfirst two moments determine the mean photocurrent | and the noise
power P, according to?

|=%ﬁ, P:nwg%Oﬂ—ﬁﬁ. (4.4)

The outgoing radiation in mode n is described by an annihilation operator
a,?“t(w), using the convention that modes 1,2,..., N are on the |eft-hand-side of
the medium and modes N +1,...,2N are on the right-hand-side. The vector a®
consists of the operators at,ag",... a3, Similarly, we define a vector a™ for
incoming radiation. These two sets of operators each satisfy the bosonic com-
mutation relations

[an(@), 8(@)] = Snmd(@ — @), [@n(@),am(@)] =0, (4.5)
and are related by the input-output relations [Jef93, Mat95, Gru96h]
a®=sd"+Ub+Vc'. (4.6)

We haveintroduced the 2N x 2N scattering matrix S, the 2N x 2N matricesU,V,
and the vectors b,c of 2N bosonic operators. The reflection and transmission
matricesare N x N submatricesof S,

S=(T f). 4.7)

of the ratio Niower/Nupper = exp(h$2/kgT) of the population of the lower and upper atomic
levels, with f = —1 corresponding to a complete population inversion.

2This definition of P is equivalent to Eq. (4.1); In some papers the noise power is defined
with an extrafactor of 2.
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The operators b, ¢ account for vacuum fluctuations. In order for these operat-
ors to satisfy the bosonic commutation relations (4.5), it is necessary that

uut—vvi=1-s9. (4.8)
In an absorbing medium ¢ = 0 and b has the expectation value
(b (@)brm(@)) = 8nmd(@— @) f(@,T),  T>0. (4.9
Conversdly, in an amplifying medium b = 0 and ¢ has the expectation value
(C(@)Ch(@)) = =8mmd(@— ) f(w,T), T <0, (4.10)

The contributions from thermal emission to | and P can be eiminated by
filtering the output through a narrow frequency window around wg. Only terms
proportional to the incident current | remain, and we arrive at Eq. (2.16),

I = 1ot ™)momo » (4.11)
P =1+2lof (0o, [t —rrt—tt")t] (4.12)

momo

Thisyields the optical shot noise formula (4.3) discussed in the introduction.

4.3 Diffusive random medium

We consider an ensembl e of absorbing disordered waveguides, with different real-
isations of the disorder, and evaluate the ensemble averages of Egs. (4.11) and
(4.12). For a random medium the dependence on the index mg of the incident
radiation is insignificant on average, so we may replace the average of a matrix
element [- - - 1m,m, bY the average of the normalised trace N~ tr. Moments of rr T
and tt" in the presence of absorption have been computed by Brouwer [Bro98g]
using the methods of random-matrix theory, in the regime that both the length L
of the waveguide and the absorption length &£, are much greater than the mean free
path I but much less than the localisation length NI. Thisisthe large-N regime
N > L/1,&/l > 1. Theratio L /&, = sisarbitrary.
Theresult isgiven by Egs. (2.41) and (2.42),

— 4 S
| = — , 4.13
3L sinhs (4.13)
— 2 3 2s+cotanhs scotanhs—1 S
P=1+—I - - - + . (4.14
3L ° (smhs sinh?s sinh®s sinh“s) (414)
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Figure4.2: Excess noise power for an absorbing disordered waveguide, computed
from Egs. (4.13) and (4.14). Theratio P/1 tendsto 1+ 2 f for L > &a.

The ratio P/ Ppgisson = P/I_increaseﬁ from1to 1+ %f with increasing s, see
Fig. 4.2. The limiting value P/ Ppgisson = 1+ % f(wo, T) for L > &, depends on
temperature and frequency through the Bose-Einstein function, but isindependent
of the scattering or absorption rates. This might be seen as the optical analogue
of the universal limiting value P/Ppgisson — % for L > | of the electronic shot
noise [Bee92, Nag92].

4.4 Near and above the localisation length

For L >> £, we may neglect the matrix tt T with respect to 1 in Eq. (4.12), so that
the expression for the Fano factor takes the form

[t (7 ") Ptlmemg

F=142f1-C)), Cp= T
MpMpo

(4.15)

In the absence of localisation, for L « &, one can simplify the calculation of
(F) by averaging separately the numerator and denominator in the coefficient
C1, since the sample-to-sample fluctuations are small. This diffusive regime was
studied above. Such a simplification is no longer possiblein the localised regime
and we should proceed differently.

We follow the general approach of Ref. [Bro98], by considering the change
in ¥ upon attaching a short segment of length §L to one end of the waveguide.
Transmission and reflection matrices are changed to leading order in § L according
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to
t— t5|_(1+rl’5|_)t , r - I’éL +t5L(1—|—rr5L)rt5T|_ , (416)

where the superscript T indicates the transpose of a matrix. (Because of recipro-
city the transmission matrix from left to right equal sthe transpose of the transmis-
sion matrix from right to left.) The transmission matrix ts_ of the short segment
may be chosen proportional to the unit matrix,

ts = (1—8L/2 —sL/2)1, (4.17)

where |, = 262/ is the ballistic absorption length. Unitarity of the scattering
matrix then dictates that the reflection matrix from the left of the short segment
is related to the reflection matrix from the right by rj, = —r(;rL. The reflection
matrix rs_ issymmetric (because of reciprocity), with zero mean and variance

(IrsL]ilrsclinm = (Gkmbin + Skndim)SL /& . (4.18)

Substituting Eq. (4.16) into Eqg. (4.15) and averaging we find the evolution equa-

tion

d(Cy)
dL

|
s 1CY _  oCipn) + (o) §<cl> +142(Cy— Cy) — (C2)

a

— ARE([t ]2 [T Tomo [T T Tt g
+2((14 Co)lt 120 1T Tmgmo2) . (4.19)

where we have defined pp = tr(L—rr T)P.

For L > &, we may replace the average of the product (C1p1) by the prod-
uct of averages (C1){p1), because [Bro98] statistical correlations with traces that
involve reflection matrices only are of relative order £,/6 — which we have as-
sumed to be « 1. The moments of the reflection matrix are given for L > & 5
by 3

_T(p-1/2) &
(Pp) = —F—=55 >
VTL(p) &a
hence they are > 1 and also > £l /£2. We may therefore neglect the terms in

the second, third, and fourth line of Eq. (4.19). What remainsis the differential
eguation

(4.20)

d(Cy)
dL

3These moments follow from the Laguerre distribution of the reflection eigenvalues, cf.
Ref. [Bee96].

§

= —2(C1)(p1) + (p2) , (4.21)
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Figure 4.3: Length dependence of the average Fano factor, computed from
Eqg. (4.3). The data points result from a numerical simulation for an absorbing
disordered waveguide with N = 50 propagating modes. Arrows indicate the ab-
sorption length &, and the localisation length £. The average Fano factor is not
affected by localisation.

which for L > &, hasthe solution

(C1) = = (4.22)

We conclude that the average Fano factor () =1+ 2f(1—(Cq)) —> 1+ % f for
L > &,, regardless of whether L issmall or large compared to €.

To support this analytical calculation we have carried out numerical simu-
lations. The absorbing disordered waveguide is modelled by a two-dimensional
square lattice (lattice constant a). The dielectric constant ¢ has a rea part that
fluctuates from site to site and a non-fluctuating imaginary part. The multiple
scattering of a scalar wave W is described by discretising the Helmholtz equation
[V2+ (wo/C)?e]W = 0 and computing the transmission and refl ection matrices us-
ing the recursive Green function technique [Bar91]. The mean free path| = 20a
and the absorption length &£, = 135a are determined from the average transmis-
sion probability N~(trttT) =1 /£,sinh(L /&,) inthe diffusive regime [Bro98]. Av-
erages were performed over the N/2 modes mg near normal incidence and over
some 107 — 102 realisations of the disorder. Resultsare shownin Figs. 4.3 and 4.4.

The length dependence of the average Fano factor is plotted in Fig. 4.3, for
N = 50and L ranging from 0 to 2¢. Clearly, localisation has no effect. The lim-
iting value of f~1(F — 1) resulting from this simulation is slightly smaller than
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Figure 4.4: Dependence of the average and variance of the Fano factor on the
number N of propagating modes, for fixed length L = 2601 = 38.5¢, of the wave-
guide. The length is larger than the localisation length & = (N + 1)I for all data
points. The dashed lines extrapolate to the theoretical expectation for 1/N — 0.
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Figure 4.5: Different dependence for electrons and photons of the shot-noise
power P onthelength L of thewaveguide. The curvefor photonsisthesameasin
Fig. 4.2, the solid curve for electrons has been calculated in Ref. [Jon92, Jon95],
the dashed curve is a qualitative interpolation. We have assumed a factor of 10
between the mean free path |, the absorption length &5, and the localisation length
&1oc = NI. (For electrons, the absorption length should beignored.) Theelectronic
P increasesfrom O to % of the Poisson value | when L becomeslarger thanl, and
then increases further to full Poisson noise at &joc = NI. The photonic P has only
asingletransition, at &;, from | to (1+ %)I . Nothing happensat L =1 or L = &)
to the shot noise of coherent radiation.

the value 3/2 predicted by the analytical theory for N >> 1. The N-dependence of
(F) inthelocalized regimeisshownin Fig. 4.4. A linethrough the data points ex-
trapolates to the theoretical expectation f ~*(¥ — 1) — 3/2for N — oo. Fig. 4.4
also shows the variance of the Fano factor. The variance extrapolates to O for
N — oo, indicating that ¥ = P/ becomes self-averaging for large N. Thisisin
contrastto P and | themselves, which fluctuate strongly in the localized regime.

It is interesting to compare this length dependence of the Fano factor with
the electronic analogue, where P becomes equal to the Poisson noise | in the
localised regime. The difference between shot noise for electrons and photonsin
summarisedin Fig. 4.5.
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4.5 Amplifying random medium

Theresults for an amplifying disordered waveguidein the large-N regime follow
from Egs. (4.13) and (4.14) for the absorbing case by the substitution t5, — —1,,
or equivaently s — is. Onethen finds Egs. (2.21) and (2.22),

— 4 [
| = —Ilg—, 4.23
3L Osms ( )
— 2 3 2s—cotans scotans—1 S
P=1+4+—Ilpgfs{ — — - - — = . 4.24
3L ° <sms sin’s sin®s sm“s) (4-24)

Recall that the Bose-Einstein function f < —1 in an amplifying medium. As
showninFig. 4.6, theratio P/ | increaseswithout bound asthelength L — n&;or,
equivalently, the amplification rate 1/7, — w?D/L2. Thisisthe laser threshold.

To understand better the behaviour close to the laser threshold, we consider
the scattering matrix S(w) as a function of complex frequency . In the absence
of amplification all poles (resonances) of S are in the lower half of the com-
plex plane, as required by causality. Amplification shifts the poles upward by an
amount 1/2t,. Thelaser threshold is reached when the first pole hitsthe real axis,
say at resonance frequency 2. For w near §2 the scattering matrix has the generic
form

OnOm
- , 4.25
S w— Q2+ 3 —i/2t e

fl

~—~

(P—I

| | |
0 0.2 0.4 0.6 0.8 1
L/7éa

o N BN (o) BNNe o)
|

Figure 4.6. Excess noise power for an amplifying disordered waveguide, com-
puted from Egs. (4.23) and (4.24). Theratio P/| diverges at the laser threshold
L = T[ga.
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where o, isthe complex coupling constant of the resonance to the nth modein the
waveguideand I" isthe decay rate. Thelaser thresholdisat "7, = 1. Wewill now
show that, while P and | diverge at the laser threshold, the signal-to-noise ratio
8 = 12/P has afinite limit — independent of on, I', Or 7. The signal-to-noise
ratios is, up to aprefactor |, the inverse of the noise figure discussed in Sec. 2.6.

We assume that the incident radiation has frequency wo = £2. Substitution of
Eq. (4.25) into Eqgs. (4.23) and (4.24) gives the simple result

lolom, |2 %
§= Mol r= 2. 4.26
2f1% §|Un| ( )
The total coupling constant X' = X} + X is the sum of the coupling constant
2= Z,’:':l|on|2 to the left end of the waveguide and the coupling constant X', =
SN s1lonl? to the right. The ensemble average (Jom,|2/Z) is independent of
mp € [1, N], hence

lo lo

(8) = 2|f|N<E'/E>:4|f|N ;

(4.27)

since (X)/X) = (X;/X) = (X/X) =1/2. Thesignal-to-noiseratio of theincid-
ent coherent radiation (with noise power Py = lo) is given by 8o = 12/Po = Io.
Theratio §/4o is the reciprocal of the noise figure of the amplifier. The signal-
to-noise ratio of the transmitted radiation is maximal for complete population
inversion, when | f| = 1 and (&) issmaller than 8o by afactor 4N. Thisuniversa
limit (8/80) — 1/4N does not require large N, but holds for any N = 1,2,....
It is the multi-mode generalisation of a theorem for the minimal noise figure of a
single-mode linear amplifier [Hen96, Cav82].

4.6 Outlook

We conclude by mentioning some directions for future research. In the elec-
tronic case it is known that the result P/l = 1/3 for the Fano factor of a dif-
fusive conductor can be either computed from the scattering matrix [Bee92] (us-
ing random-matrix theory) or from a kinetic equation known as the Boltzmann-
Langevin equation [Nag92]. Here we have shown using the former approach
that the optical analogue is a Fano factor of 1+ g f for a disordered waveguide
longer than the absorption length. To obtain this result from a kinetic equation
one needs a Boltzmann-Langevin equation for bosons. Work in this direction is
in progress [Mis99].
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Theeffect of localisation on the Fano factor is strikingly different for electrons
and photons. In the electronic case the average (P/1) goesto 1 in the localised
regime, but we have found for the optical case that this average is unchanged
as the length of the waveguide becomes longer than the localisation length and
approaches the universal value 1+ % f.

In the case of an amplifying disordered waveguide we have restricted our-
selves to the linear regime below the laser threshold. Above threshold the fluctu-
ations in the amplitude of the electromagnetic field are strongly suppressed and
only phase fluctuations remain [Man95]. These determine the quantum-limited
linewidth of the radiation, see Ch. 6. The application to a disordered waveguide
would require aknowledge of the statistics of the poles of the scattering matrix in
such a system, which is currently lacking.

The recent interest in the Hanbury-Brown and Twiss experiment for electrons
in a disordered metal (for a recent example see [BLit99]) suggests a study of the
optical case. The formalism presented here for auto-correlations of the photocur-
rent can be readily extended to cross-correlations (see Ch. 5), but it has not yet
been applied to a random medium.

We do not know of any experiments on photon shot noise in a random me-
dium, and hope that the theoretical predictions reviewed here will stimulate work
in thisdirection. The universal limits of the Fano factor in the absorbing case and
the signal-to-noiseratio in the amplifying case seem particularly promising for an
experimental study.

4Since in Sec. 4.5 the laser threshold was found to be at 1/7, = n2D/L? in the large-N
limit, we conclude that I" = w?D/L? is the minimal decay rate in that limit. In other words,
the density of S-matrix poles for a disordered waveguide without amplification should vanish
for Imew > —2D/2L2 if N — oo. Thisdensity is unknown, but asimilar gap in the density of
poles has been found for the scattering matrix of a chaotic cavity [Fyo97].
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Chapter 5

Long-range correlation of thermal
radiation

5.1 Introduction

The Hanbury Brown-Twiss effect is the existence of spatial correlationsin thein-
tensity of thermal radiation by a distant source. It was originally proposed as an
intensity-interferometric method to measure the angular opening of astar [HB56],
far less susceptibl e to atmospheric distortion than amplitude-interferometric meth-
ods [B0a90]. Two photodetectors at equal distance r from a source (diameter a)
will measure a correlated current if their separation d is smaller than the trans-
verse coherence length d; ~ Ar /a of the radiation from the source at wavelength
A. The correlation function decays with increasing d in an oscillatory way, with
amplitude o (dc/d)® [Man95].

The textbook results assume that the source of the thermal radiation is a black
body, meaning that at each frequency any incident radiation is either fully ab-
sorbed or fully reflected. In aredlistic system there will be a frequency range
where only partia absorption occurs. The purpose of this paper isto show that in
general for thermal radiation the correlation function does not decay compl etely to
zero, but to a non-zero d-independent background value. This long-range correl-
ation is smaller than the short-range correlation by afactor (1/a)?, and becomes
dominant for d > r (x/a)Y/3. It contains information on deviations of the thermal
radiation from the black-body limit.

The new information contained in the long-range correlation is most eas-
ily described when the source is embedded in a waveguide (see Fig. 5.1). The
waveguide has length L, cross-sectional area A ~ a2, and supports N = 2w A/A?

73
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Figure5.1: Schematic diagram of asource (length L, diameter a) radiatinginto an
N-mode waveguidethat isopen at both ends. Theradiation leaving the waveguide
at one end is detected by two photodetectors at a distancer from the source and
separated by a distance d. The photocathodes have an area below the transverse

coherence aread? ~ r2/N. We find that the photocurrents are correlated even if
the two detectors are separated by more than d..

r
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propagating modes at frequency w, counting both polarisations. In the far-field,
and near normal incidence, each mode correspondsto atransverse coherence area
(r1)?/A=d>2 The source isin thermal equilibrium at temperature T. The ra-
diation emitted through the left end of the waveguide is incident on a pair of
photodetectors, one detecting the photocurrent 1 (t) in mode k, the other detect-
ing I, (t). Each photocathode has an area equal to the coherence area or smaller.
The photocount ny = Ny + 6Nk (number of photons counted in atime t) and the
photocurrent I, = dng/dt = Iy + 81k fluctuate around their time-averaged values
Nk and |, =N /t. We seek the correlation function

Cu = /Oo ST+ )8l Odr = lim %Snk(t)8n|(t). (5.1)

The overline indicates an average over many measurements on the same sample.

5.2 Random-matrix formulation

The advantage of embedding the sourcein awaveguideisthat we can characterise
it by a finite-dimensional scattering matrix S(w), consisting of four blocks of

dimension N x N,
r t
(1) 52
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A mode | incident from the left is reflected into mode k with amplitude r, and
transmitted with amplitude t,,. Similarly, ry, and ty are the reflection and trans-
mission amplitudesfor amodel incident from the right. Reciprocity relates these
amplitudesby ry =r, ry =ry,, andty =t .

It has been shown recently [Bee98], using the method of “input-output rela-
tions’ [Jef93, Mat95, Gru96eb], how the photocount distribution can be expressed
in terms of the scattering matrix. The expressionsin Ref. [Bee98] are for asingle
multi-mode photodetector. The corresponding formulasfor two single-mode pho-
todetectorsare

[

Cu = axey /ooo|(QQT)k|(w)|2[f(w,T)]zg—n+5k||_k,

e = o /0 Q@) 0,132 (53)

where ak isthe detector efficiency (the fraction of the photocurrent in mode k that
isdetected) and f isthe Bose-Einstein function

f(w,T) = [exp(ho/ ke T) - 1] " . (5.4)
The N x N matrix Q isrelated to the reflection and transmission matrices by
QQ =1 —rrf—tt". (5.5)

The integral over @ extends over a range §2. set by the absorption line width,
centered at wg. Typically, 2. « wo, SO We can neglect the frequency dependence
of N and f. The matrix Q(w) for arandom medium fluctuateson ascale . much
smaller than £2.. Theintegration over w then averages out the fluctuations, so that
we may replace the integrand by its ensemble average, indicated by (.. .),

Cu = axoy fZ/Om(l(QQT)kl(w)lz)g—: + Sk I - (5.6)

We evaluate the ensemble average using results from random-matrix the-
ory [Bee97]. For a medium with randomly placed scatterers, the “equivalent
channel approximation” [Mel92] has proven to be reliable. According to this
approximation, all N modes are statistically equivalent. As a consequence, for
any k #1 one has

N
(tr(QQ"N% =N ((QQN(QQMK)

1

j=
N(N = 2)(|(QQMNuI?) + N(QQN3Z) . (5.7)
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The average of (Q Q")2, factorisesin the large-N limit [Bee97],
(QQN%) = (RN [1+ONTH] =N*trQQ"?. (58
Combination of Egs. (5.7) and (5.8) givesus
(I(QQMMIA = N2(r(QQN*) —N*rQQ")?+O(N"?).  (5.9)

The eigenvalues o4,0o,...,0n Of the matrix rr T +ttT are the “scattering
strengths” of the random medium. We denoteby o P = N=1Y" o the pth spec-
tral moment of the scattering strengths. According to Egs. (5.5), (5.6) and (5.9),
the cross-correlator Cy; (k # 1) then takes the form of avariance,

Cu = =3 /0 ” ((ﬁ)-(g)z)g—‘:. (5.10)

Thisis our basic result for the long-range correlation announced in the introduc-
tion. The new information contained in the cross-correlator is the variance of the
scattering strengths. The auto-correlator, in contrast, depends entirely on the first
spectral moment,

o d _
Ckk=a§f2/ 1-7)2=2 41y, (5.11a)
0 2Tl7
I_k:akf/ 179 (5.11b)
0 27

where we have used Eq. (5.8).

The long-range correlation Cy of two photodetectors separated by more than
acoherencelengthisan order N smaller than the short-range correlation Cyy — Ik
of two photodetectors separated by less than a coherence length. (The full value
Ckk ismeasured in a single-detector experiment.) The long-range correlation van-
ishesif al N scattering strengths are the same, as they would be for an idealised
“step-function model” of ablack body (o, = 0for |w — wg| < £2¢ and o, = 1 other-
wise). A random, partially absorbing medium, in contrast, has abroad distribution
of scattering strengths [Bee97], hence a substantial long-range correlation of the
photocurrent.

5.3 Applications

5.3.1 Disordered medium

As first example, we compute the correlation for a weakly absorbing, strongly
disordered medium. The moments of rr T and tt" appearing in Egs. (5.10) and
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Figure 5.2: Long-range correlation Cy, (solid line), in units of $2.f 2001 /Né&o,
and short-range correlation Cyk — I (dashed ling), in units of 2¢(1f ax/&)?, of
the radiation emitted from a disordered waveguide. A Lorentzian frequency de-
pendence is assumed for the dielectric function, with width §2. and absorption
length & at the centre of the absorption line. The mean free path | is assumed to
be « &y. The short-range correlation saturates in the limit L /£9 — oo, while the
long-range correlation keepsincreasing o< InL /&p.

(5.11) have been caculated by Brouwer [Bro98] as a function of the number of
modes N, the sample length L, the mean free path |, and the absorption length
£a = /D1a (7a iS the absorption time and D = cl/3 the diffusion constant). It is
assumedthat 1/N « 1 /&5 <« 1, but theratio L /&, = sisarbitrary. Theresultis

S scoths—1 S
- + - 2 + N 3 - . A
sinhs ' sinh®s sinh®s sinh®s

<ﬁ> —(7)2 = 32€—| (coth3s—
(5.12a)

a

(1—7) = ;S—Itanh; . (5.120)

To compute the correlators (5.10) and (5.11) it remainsto carry out the integ-
rations over w. The frequency dependence is governed by the imaginary part of
the dielectric function ¢”(w), for which take the Lorentzian ¢”(w) = eg[1+ (w —
w0)?/$22]7L. Since ta = 1/woe”, the corresponding w-dependence of &, and s is
Ea/E0 = So/S = [L+ (0 — w0)?/ 2212, with & and sy the values of & and s at
o = wp. Results are plotted in Fig. 5.2. In the limit L /&9 — O of athin sample,
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we have
1 If 2w 3
Ca = g2 (L2 (5.139)
Cu= 22, (”“k) (L7602 + I, (5.130)
On o
= %szc”“k oy (5.130)

In the opposite limit L /&, — oo of athick sample, the cross-correlator Cy, and
the mean current I both divergelogarithmically ocInL /&o. Theratio Cy, /(Ik I )1/2
tendsto (1/2N) f , /akay inthelarge-L limit, and the short-range correlation Cyy —
I to ch(I f a /&0)?, remaining larger than the long-range correl ation because the
limit N — oo hasto betaken before L — oo.

5.3.2 Chaotic cavity

Our second example is an optical cavity filled with an absorbing random me-
dium. The radiation leaves the cavity through a waveguide supporting N modes.
The general formula (5.3) applies with QQ" =1 —rr T (since there is no trans-
mission). The scattering strengths o1,05,...,0N in this case are eigenvalues of
rrt. Their distribution is known in the large-N limit [Bee99] as a function of
the dimensionless absorption rate y = 2n/Nt,Aw, with Aw the spacing of the
cavity modes near frequency wo. (The quantity y is the ratio of the mean dwell
timein the cavity without absorption and the absorption time.) The moments (o)
and (02) can then be computed by numerical integration. Results are shown in
Fig. 5.3, againfor aLorentzian frequency dependence of ¢”(w). Unlikein thefirst
example, we are now not restricted to weak absorption but can let the absorption
rate yo at the central frequency wo become arbitrarily large. For weak absorption,
1o < 1, we have

1 2w 2

Cu = ZQCTVO ' (5.14a)
1 _
Cik = Z-Qc(fotk)/o)z-i- Ik, (5.14b)
— 1
Iy = E.ch(xk)/o . (5.14C)

For strong absorption, yo > 1, all three quantities Cy;, Cyx and Ik diverge o< /¥0
(see Fig. 5.3, top). Theratio Cq /(Ix11)Y? tends to 0.062 f (aker )2/ N, and the
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Figure 5.3: Correlators of the radiation emitted from a disordered optical cavity
as a function of the absorption rate yq at the centre of the absorption line with
Lorentzian profile. (The absorption rate is normalised to the mean dwell time.)
Top: Long-range correlation Cy (solid ling), in units of 2 f 2000 /N, and short-
range correlation Cy — Iy (dashed line), in units of 2. f 2«2, Bottom: Same cor-
relators, but now normalised by the mean photocurrent. (The left axisisin units
of f /akar/N, theright axisinunitsof fak.) Thelong-range correlation persists
in the limit y9 — oo because of partia absorption in the tails of the absorption
line.
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ratio (Cyk — I_k) / I to % f ok (seeFig. 5.3, bottom). Thelong-rangecorrel ation does
not vanish as yp — 0o, because there remains atail of frequencies with moderate
absorption and thus awide distribution of scattering strengths, even if the system
behaveslike an ideal black body for frequencies near wo.

5.4 Conclusion

In summary, we have shown that the thermal radiation emitted by random media
contains long-range spatial correlations in the intensity. The long-range correl-
ation has information on the spectral variation of the scattering strengths that is
not accessible from the luminosity. We have analysed two types of systemsin
detail, providing specific predictions that we hope will motivate an experimental
search for the long-range correlation.



Chapter 6

Quantum limit of the laser linewidth
In chaotic cavities

6.1 Introduction

Laser action selects amode in a cavity and enhances the output intensity in this
mode by a nonlinear feedback mechanism. Vacuum fluctuations of the electro-
magnetic field ultimately limit the narrowing of the emission spectrum [Sch58].
The quantum-limited linewidth, or Schawlow-Towneslinewidth,

1
Swgr = 5F2/| , (6.1)

is proportional to the square of the decay rate I of the lasing cavity mode and
inversely proportional to the output power | (in units of photonsg/s). Thisis a
lower bound for the linewidth when I" is much less than the linewidth of the
atomic transition and when the lower level of the transition is unoccupied. Many
years after the work of Schawlow and Townes it was realised [Pet79, Sie89a,
SieB9b] that the true fundamental limit is larger than Eq. (6.1) by afactor K that
characterises the non-orthogonality of the cavity modes. This excess noise factor,
or Petermann factor, has generated an extensive literature [Che96, Eij96, Eij97,
Bru97, Grads, Sie9g].

Apart from its importance for cavity lasers, the Petermann factor is of fun-
damental significance in the more general context of scattering theory. A las-
ing cavity mode is associated with a pole of the scattering matrix in the com-
plex frequency plane. We will show that the Petermann factor is proportional to
the squared modulus of the residue of this pole. Poles of the scattering matrix
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also determine the position and height of resonances of nuclei, atoms, and mo-
lecules[Mah69]. Powerful numerical tools that give accessto poles even deep in
the complex plane have been developed recently [Man97]. They can be used to
determine the residues of the poles as well. Our work is of relevance for these
more general studies, beyond the original application to cavity lasers.

Existing theories of the Petermann factor usually deal with cavities that have
ahigh degree of symmetry. They factorise K = KK, into longitudinal and trans-
verse factors, assuming that the cavity mode is separable into longitudinal and
transverse modes, each of which is basically one-dimensional. For such regular
cavities the framework of ray optics provides a simple way to solve the prob-
lem in a good approximation [Eij96, Eij97]. This approach breaks down if the
light propagation in the cavity becomes chaotic, either because of an irregular
shape of the boundaries or because of randomly placed scatterers. In the lan-
guage of dynamical systems, one crosses over from integrable to chaotic dy-
namics [Haa91]. The method of random-matrix theory is well-suited for such
chaotic cavities[Haa9l, Meh90]. Instead of considering a single cavity, one stud-
ies an ensemble of cavities with small variations in shape and size, or in position
of the scatterers. The distribution of the scattering matrix in this ensemble is
known. Recent work has provided a detailed knowledge on the statistics of the
poles [Sok88, Sok89, Fyo96, Fyo97, Som99]. Much less is known about the
residues [Jan99, Cha98, Meh0Q]. In this chapter we fill the remaining gap to a
considerable extent.

The outline of this chapter is asfollows. In Section 6.2 we derive the connec-
tion between the Petermann factor and the residue of the pole of the lasing mode.
Theresiduein turn is seen to be characteristic for the degree of nonorthogonality
of the modes. In this way we make contact with the existing literature on the
Petermann factor [Gra98, Sie98].

In Section 6.3 we study the single-channel case of a scalar scattering mat-
rix. This applies to a cavity that is coupled to the outside via a small opening
of area A < A2/2m (with A the wavelength of the lasing mode). For preserved
time-reversal symmetry (the relevant case in optics) we find that the ensemble
average of K — 1 depends non-analyticallyec T InT ~1 on the transmission prob-
ability T through the opening, so that it is beyond the reach of perturbation theory
evenif T « 1. We present a complete resummation of the perturbation series
that overcomes this obstacle. We derive the conditional distribution P(K) of the
Petermann factor at a given decay rate I" of the lasing mode, valid for any value
of T. Themost probablevalue of K —1isx T, henceit is parametrically smaller
than the average.
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In a cavity with such a small opening the deviations of K from unity are
very small. We contrast thisin Sec. 6.4 with the multi-channel case of an N x N
scattering matrix, which corresponds to an opening of area 4 ~ Ni2/2n. The
lasing mode acquires a decay rate I" of order I'o = NT A /2n (with A the mean
spacing of the cavity modes), and the mean Petermann factor is K o +/N.

6.2 Relationship between Petermann factor and residue

Modes of a closed cavity, in the absence of absorption or amplification, are ei-
genvalues w,, of a Hermitian operator Hq. This operator can be chosen real if
the system possesses time-reversal symmetry (Symmetry index 8 = 1), otherwise
it is complex (8 = 2). For a chaotic cavity, Ho can be modelled by an M x M
Hermitian matrix with independent Gaussian distributed elements,

4,2
(For B =1 (2), thisisthe Gaussian orthogonal (unitary) ensemble [Meh90].) The
mean density of eigenvaluesisthe Wigner semicircle

M
5V 42 —w?. (6.3)

21

The mean mode spacing at thecentrew = 0is A =nu/M. (Thelimit M — oo
at fixed spacing A of the modes s taken at the end of the calculation.)

A small opening in the cavity is described by a real, non-random M x N
coupling matrix W, with N the number of scattering channelstransmitted through
the opening. (For an opening of area 4, N ~ 2rn.A/A? a wavelength A.) Modes
of the open cavity are complex eigenvalues (with negative imaginary part) of the
non-Hermitian matrix

P(Ho)  exp (—ﬁM tr HOZ) . (6.2)

o(w)=

H=Hy—imtWW". (6.4)

In absence of amplification or absorption, the scattering matrix Sat frequency
w isrelated to H by [Mah69, Ver85]

S=1-2niW(w—H)'W. (6.5)

The scattering matrix is a unitary (and symmetric, for 8 = 1) random N x N
matrix, with poles at the eigenvalues of H. It enters the input-output relation

N
al(w) =) Snnl@)a () , (6.6)

n=1
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which relates the annihilation operators a%" of the scattering states that leave the
cavity to the annihilation operators al" of states that enter the cavity. The indices
n, m label the scattering channels.

We now assume that the cavity is filled with a homogeneous amplifying me-
dium (constant amplification rate 1/7, over alarge frequency window 2, = L A,
L > N). Thisaddsatermi/2z, to the eigenvalues, shifting them upward towards
the real axis. The scattering matrix

S=1-2niW(w—H —i/2t) "W (6.7)

isthen no longer unitary, and the input-output relation changesto [Jef93, Bee98]

N N
a (@) = Snn(@)a (@) + Y _ Vmn(@)ch(@) . (6.8)

n=1 n=1
All operatorsfulfil the canonical bosonic commutation relations [an(w), 8/ ()] =
Snmé(w — w’). Asaconsequence,

V(0)V(w) = So)S'(w) -1 . (6.9)

The operators ¢ describe the spontaneous emission of photons in the cavity and
have expectation value

(C(@)Cm(@)) = Samd(0 — &) (0, T) , (6.10)

with f(w,T) = [exp(hw/ksT) — 1]~ the Bose-Einstein distribution function at
frequency w and temperature T.*

In the absence of external illumination ((a‘”Ta‘”) = 0), the photon current per
frequency interval,

N

() = 5= D @ @)ae) (611)

m=1

isrelated to the scattering matrix by Kirchhoff’slaw [Jef93, Bee98|
1 f
| (w) = f (w,T)Z—tr[n — S'(w)Sw)] . (6.12)
il

For w near thelaser transition we may replace f by the population inversion factor
Nup/(Niow — Nup), where Ny and Nio,, are the mean occupation numbers of the

1The temperature T defined in this way is positive for an amplifying medium.
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upper and lower levels of the transition. In this way the photon current can be
written in the form

1 N
| (w) = El\lup_—“ﬁ’\lmtr[sf(w)aw)—n], (6.13)
that is suitable for an amplifying medium.

The lasing mode is the eigenvalue 2 —i1"/2 closest to the rea axis, and the
laser threshold is reached when the decay rate I of this mode equals the ampli-
ficationrate 1/7,. Near the laser threshold we need to retain only the contribution
from the lasing mode (say mode number |) to the scattering matrix (6.7),

~ (WTU)m(U~W)im

B >y 19

where U isthe matrix of right eigenvectorsof H (no summation over | isimplied).
The photon current near threshold takes the form

2Ny (UTWWIU), (U twwiu —th,

I () = T (6.15)
Nup — Niow (0—2)%+ Z(F—l/l'a)z
ThisisaLorentzian with full width at half maximum §w = I' — 1/7,.
The coupling matrix W can be eliminated by writing
r
—n(UTWW'U), =Im(UTHU), = _E(U U, (6.16a)
r
—n(UtWWU Ty = Im(UTHU M), = -5 WU “lu-y, . (6.16b)
Thetotal output current isfound by integrating over frequency,
N r
| =Uuy Uty —2 6.17
(U U ( ) No— Niow 500 (6.17)
Comparison with the Schawlow-Townes value (6.1) shows that
Sw=2K —P 5 (6.18)
Nup - Nlow ST .

where the Petermann factor K isidentified as

K=UM),u-ut), >1. (6.19)
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For time-reversal symmetry, we can chooseU ~1 =UT, and find K = [(UU "), ]2
The factor of 2 in the relation between §w and dwg; occurs because we have
computed the laser linewidth in the linear regime just below the threshold, in-
stead of far above the threshold. The effect of the nonlinearities above threshold
is to suppress the amplitude fluctuations while leaving the phase fluctuations in-
tact [Gol91], hence the simple factor of 2 reduction of the linewidth. The factor
Nup/(Nup — Niow) accounts for the extra noise due to an incomplete population
inversion. The remaining factor K is due to the non-orthogonality of the cavity
modes [Sie89a, SieB9b], since K = 1if U isunitary.

6.3 Single scattering channel

The relation (6.19) serves as the starting point for a calculation of the statistics
of the Petermann factor in an ensemble of chaotic cavities. In this section we
consider the case N = 1 of a single scattering channel, for which the coupling
matrix W reduces to a vector @ = (Wi, Was,...,Ww1). The magnitude |a|? =
(MA/n?)w, where w € [0,1] is related to the transmission probability T of the
single scattering channel by T = 4w(1+4 w)~? [Bee97]. We assume a basis in
which Ho is diagonal (eigenvalues wq, right eigenvectors |q), left eigenvectors
(ql). In this basis the entries aq remain real for g = 1, but become complex
numbersfor 8 = 2. Since the eigenvectors |q) point into random directions, and
since the fixed length of @ becomes an irrelevant constraint in the limit M —
oo, each real degree of freedom in «q is an independent Gaussian distributed
number [Meh90]. The squared modulus |aq|? has probability density

1 2703 |org |2 A2 B2
p 2y _ il expl| — 2) . 6.20
(lagl®) 2n|aq|2( oA ) IO( o log | ) (6.20)

Eq. (6.20) isa x 2-distribution with 8 degrees of freedom and mean Aw /2.

We first determine the distribution of the decay rate I" of the lasing mode,
following Ref. [Mis98]. Since the lasing mode is the mode closest to the real
axis, its decay rate is much smaller than the typical decay rate of amode, whichis
=~ T A. Then we calculate the conditional distribution and mean of the Petermann
factor for given I". The unconditional distribution of the Petermann factor is
found by folding the conditional distribution with the distribution of I", but will
not be considered here.
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6.3.1 Decay rate of the lasing mode

The amplification with rate 1/, is assumed to be effective over awindow 2, =
L A containing many modes. Thelasing modeisthe mode within thiswindow that
has the smallest decay rate I". For such small decay rates we can use first-order
perturbation theory to obtain the decay rate of mode g,

Iy =27|ag)?. (6.21)

The x2-ditribution (6.20) of the squared moduli |eq|? trandlates into a x 2
distribution of the decay rates,

P(I") o« % A)/2exp (-’jg—g) . (6.22)

Ignoring correlations, we may obtain the decay rate of the lasing mode by
considering the L decay rates as independent random variables drawn from the
distribution P(I"). The distribution of the smallest among the L decay rates is
then given by

L-1

r
PL(r)=LP(IN) [l—/ P(F’)dF/} : (6.23)
0
For small rates I we can insert the distribution (6.22) and obtain

1 LnI” nl’ L=t
PN~ ﬁexp (— 4wA) [erf (m)} , B=1, (6.24a)

L
PL(I") ~ exp (—2:;—2) , B=2.  (624b)

Here erf(x) = 2n~Y2 [ exp(—y?)dy is the error function. The decay rate of
the lasing mode decreases with increasing width of the amplification window as
I ~wA(R:/A)2F K« wA.

6.3.2 First-order perturbation theory

If the opening is much smaller than awavelength, then a perturbation theory in a
seems a natural starting point. We assign theindex | to the lasing mode, and write
the perturbed right eigenfunction |} = Zq dq/q) and the perturbed left eigen-
function {I|" = Zq €y(ql, in terms of the eigenfunctions of Ho. The coefficients
are dq = Ug /Uy and g = Uj;*/U; ™, i. e, we do not normalise the perturbed
eigenfunctions but rather choose d; =g = 1.
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To leading order the lasing mode remains at £2 = w, and has width
I =2m|o?. (6.25)

The coefficients of the wave function are
* T o
dy = i—9% g =4 (6.26)

Wq — @ Wq — @)
The Petermann factor of the lasing mode follows from Eq. (6.19),
1+ quldal?) (1+ X guleql®
K = (14 X 1) s ) ~14+ ) Jdg -, (6.27)
|14 Y W

where we linearised with respect to I" because thelasing mode is close to the real
axis. From Eq. (6.26) onefinds

(6.28)

We seek the distribution P(K) and the average (K) - of K for a given value of
and .

For g = 1, the probability to find an eigenvalue at wq given that there is an
eigenvalue at w, vanishes linearly for small |wq — o], as a consequence of ei-
genvalue repulsion constrained by time-reversal symmetry. Since the expression
(6.28) for K diverges quadraticallyfor small |wq — o, |, we concludethat (K) g
does not exist in perturbation theory.? This severely complicates the problem.

6.3.3 Summation of the perturbation series

To obtain afinite answer for the average Petermann factor we need to go beyond
perturbation theory. By a complete summation of the perturbation series we will
in this section obtain resultsthat are valid for all values T < 1 of the transmission
probability. Our starting point are the exact relations

gz = wqdq —imag Y _ il , (6.29)
p

€2 = e —ima; Y apep, (6.29b)
p

2For broken time-reversal symmetry there is no divergence. We can use the known two-
point correlation function R(w,wq) of the Gaussian unitary ensemble to obtain (K)e r =1+
InTr/aforT <L
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between the complex eigenvalues zq of H and the real eigenvalues wq of Ho.
Distinguishing between g =1 and q # |, we obtain three recursion relations,

7 = —in|oy|®—iney Y eidy, (6.30a)
q#l
idg = (a| +3 ad ) (6.30b)
p#l
i o+ Y apg (6.30c)
€& = z— wq(l ; p p)

We now use the fact that z is the eigenvalue closest to the rea axis. We
may therefore assume that z, is close to the unperturbed value o, and replace
the denominator z, — wq in Eq. (6.30C) by @, —wq. That decouples the recursion
relations, which may then be solved in closed form,

z =w —in|oP(A+inA), (6.31a)
idy = —9M (1 4inA)L, (6.31b)

W) — Wy

) na§a| ) 1

ieg=——"—(1+IinA) . (6.31c)

W) — yq

We have defined
A= Z|aq|2(a)| —wg) . (6.32)
q#l

The decay rate of the lasing modeis
I'=-2Imz = 2n|o|*(1+ n?A%) L. (6.33)

From Eq. (6.27) we find

2nl” B
K=1+—"—— 6.34
Ryl (6.34)
with
B=A4) lagl*(ey —wg) 2. (6.35)

q#l

The problem is now reduced to a calculation of the joint probability distribu-
tion P(A,B). This problem is closely related to the level curvature problem of



90 CHAPTER 6. QUANTUM LIMIT OF THE LASER LINEWIDTH ...

random-matrix theory [Opp94, Opp95, Fyo95]. The calculation is presented in
Appendix 6.A. Theresultis

n ﬂ/Z(nzAz_,_wz)ﬂ ,Bw 12 A2

6.3.4 Probability distribution of the Petermann factor
From Egs. (6.20), (6.33), (6.34), and (6.36) we can compute the probability dis-

tribution
2nl’ B
P(K)=(Z) <<K 1-— —l+n2A2)Z> (6.373)
270y |2
Z=05(2—w)d <F—1+ 2A2)' (6.37b)

of K at fixed I and £2 by averaging over ||, A, and B. In principle one should
also require that the decay rates of modes q # | are bigger than I', but this ex-
tra condition becomes irrelevant for I — 0. The average of Z over || with
Eq. (6.20) yieldsafactor (14 n2A%)#/2. (Only the behaviour of P(|e,|?) for small
o, |2 matters, because we concentrate on the lasing mode.) After integration over
B the distribution can be expressed as aratio of integrals over A,

p(K) = B0 Aw ((K 1)4\)“'3/2

3 I wl
/dA(1+n2A2/w2)ﬂ (_,anf(l+rc2A2/w2))
(1+n2A2)L+8 (K —1) A1+ n2A2)
o] (1+ TEZAZ)/S/Z -1
x</0 dA(1+n2A2/w2)1+ﬂ/2) . (6.38)

We introduce the rescaled Petermann factor « = (K —1)A/I'T. A simple
result for P(x) followsfor T =1,

4Bn%
P = armen(-2). (6:39)
andfor T « 1,
T T T
P(e) = o5 (1+5-) ep(—7-) p=1, (6409

T 2n  7? T
P(x):m(1+§+§)exp(—z> : p=2. (6.40D)
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P(x)

P(x)

Figure 6.1: Probability distribution of the rescaled Petermann factor « = (K —
DA/T'T forT=1and T « 1, in the presence of time-reversal symmetry (top)
respectively absence of time-reversal symmetry (bottom). The solid curvesfollow
from Egs. (6.39) and (6.40), the data points follow from a numerical ssimulation

of the random-matrix model.
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AsshowninFig. 6.1, thedistributions are very broad and asymmetric, with along
tail towardslarge «.

To check our analytical results we have also done a humerical simulation of
the random-matrix model, generating a large number of random matrices H and
computing K from Eq. (6.19). Asone can see from Fig. 6.1, the agreement with
the theoretical predictionsis flawless.

6.3.5 Mean Petermann factor

The distribution (6.38) gives for preserved time-reversal symmetry (8 = 1) the

mean Petermann factor
0 0
I 2w G%%<w2 -1 —l)
2 2

(Kogr=1——— : (6.41)
A3 G2 | w2 _% %
2 -1 0

in terms of the ratio of two Meijer G functions. We have plotted the result in
Fig. 6.2, asafunction of T = 4w(1+w) 2.

It isremarkable that the average K depends non-analyticallyon T, and hence
on the area of the opening. (The transmission probability T isrelated to the area

(K—DA/T'T

Figure 6.2: Average of the rescaled Petermann factor « as afunction of transmis-
sion probability T. The solid curve is the result (6.41) in the presence of time-
reversal symmetry, the dashed curve is the result (6.43) for broken time-reversal
symmetry. For small T, the solid curve diverges o< InT ~* while the dashed curve
has the finite limit of 7t/3. For T = 1 both curves reach the value 27t /3.
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A of the opening by T ~ A3/A% for T « 1 [Bet44].) For T « 1, the average
approaches the form

nTlr, 16
<K>g,r=1+€7|n?. (6.42)

The most probable (or modal) value of K — 1~ TI"/A is parametrically smaller
than the mean value (6.42) for T « 1. The non-analyticity results from the rel-
atively weak eigenvalue repulsion in the presence of time-reversal symmetry. |If
time-reversal symmetry is broken, then the stronger quadratic repulsion is suffi-
cient to overcome the w2 divergence of perturbation theory (6.28) and the aver-
age K becomes an analytic function of T. For this case, we find from Eq. (6.38)
the mean Petermann factor

I A4dnw

<K>.(2,1‘=1+ Zm ) (6.43)

shown dashed in Fig. 6.2.

6.4 Many scattering channels

For arbitrary number of scattering channels N the coupling matrix Wisan M x N
rectangular matrix. The square matrix TWTW has N eigenvalues (M A /m)wy,.
The transmission coefficients of the eigenchannelsare

4wn

Th=———.
" (14 wn)?

(6.44)

A single hole of area + > A2 (at wavelength 1) corresponds to N ~ 2mA /A2
fully transmitted scattering channels, with all T, = w, = 1 the same. We will
only discuss this case in the following. As in the single-channel case, we first
determinethe distribution of thedecay rate I" of thelasing mode. Then we discuss
the mean Petermann factor (K ) for given I".
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Figure 6.3: Decay-rate distribution P(I") of achaotic cavity with an opening that
supportsN =1, 2, 4, 6, 8, 10, 12 fully transmitted scattering channels. Computed
from Eq. (6.45), for the case of broken time-reversal symmetry.

6.4.1 Decay rate of the lasing mode

The distribution of decay rates P(I") has been calculated by Fyodorov and Som-
mers. For broken time-reversal symmetry the result is [Fy096, Fyo97]

PUU=§?J%T)%(%F), (6.453)
RO g e (6.450)

d" /sinhy
oY) = 2( () gy (552) - (6.450)

The behaviour of P(I") for various numbers N of fully transmitted scattering
channelsisillustrated in Fig. 6.3.

The case N = 1 is specid in that only for this case P(I" = 0) is non-zero.
For the other extreme, N > 1, there even appears a gap and the distribution
P(I") becomes non-zero only for I > Iy (with I' = NA/27), where it is equal
to [Haa92, Leh95]

P(I') = F, rsry. (6.46)

The smallest decay rate I'p corresponds to the inverse mean dwell time in the
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cavity. For large but finite N, thetail I" < Iy of the distribution is given by

P(I") = 1+erf(u)]+O(N~3/?), (6.47)

T
NT2A NTZAl
wherewe have defined u = /N/2(I" /o — 1).

The distribution P (") of the lasing mode follows from Eqg. (6.23), and is
sharply peaked around a value of I" deviating from I'y only by order Av/N «
I (aslong as L « eN). Thisisin contrast to the results for N = 1, where I”
of the lasing mode is very small. This enabled us in Sec. 6.3 to only consider
the limit I — 0O, which proved to be essential in the derivation presented there.
In the calculation for N > 1 this limit is not applicable, making the calculation
much more difficult and disallowing to simply follow the lines of Sec. 6.3. As
result, only the average of the Petermann factor has been calculated, whereas its
distribution is not known for N > 1.

Theresultsfor preserved time-reversal symmetry are moreinvolved [Som99].
Fortunately, we can draw all important conclusions from the results for broken
time-reversal symmetry, on which we will concentrate here. Especialy, the large-
N limit (6.46) remains valid.

6.4.2 Mean Petermann factor

The mean Petermann factor is [Fra00, Sch00]

B 28(nI/ A)
(K)o, r =1+ }'1(RF/A)$’2(RF/A) : (6.489)
N—

Z %)“ g [ _y% (S‘Ty)] , (6.48)

=0

with 1 and %> givenin Eq. (6.45). For N 3> 1and I" < I, thiscan be simplified
to give
K)ae.r = v2N[F(u)+u]
+FU[EB-gu+2ud+iQ+ud)FU)]+O(NY?),  (6.49%)
exp(=u?)
Jr[l+erf(u)]

For I = I'p (u = 0) this simplifies further to

[2N 4
(K>.Q,1‘:F0 = ?+ g . (650)

F(u)= (6.49b)
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Figure 6.4: Average Petermann factor (K) as a function of the decay rate I" for
different numbers N of fully transmitted scattering channels, when time-reversal
symmetry is broken (top) respectively preserved (middle). The solid curves are
the analytical result (6.48), the data points are obtained by anumerical simulation.
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Figure 6.5: Average of the Petermann factor K at I = I'p as function of the
number N of fully transmitted scattering channels. The analytical result (6.48)
for broken time-reversal symmetry (full curve) is compared with the result of
a numerical simulation (open circles for broken time-reversal symmetry, filled
circles for preserved time-reversal symmetry). The dashed line is the large-N
result (6.50).

We now compare the analytical findings with the results of numerical simu-
lations. We generated a large number of random matrices H with dimension
M = 120 (M = 200) for N = 2,4,6,8 (N = 10,12) fully transmitted scattering
channels. Fig. 6.4 shows the mean K at given I". We find excellent agreement
with the analytical result (6.48). The behaviour (K) ~ +/N at I" = I, predicted
by Eg. (6.50) isverifiedin Fig. 6.5.

In the absence of an analytical result, the numerical simulation can be used
to compute the distribution of K at given I'. The result depicted in Fig. 6.7
showsthat, similar to the single-channel case, the distribution is wide and highly
asymmetric with along tail towards high K.

For preserved time-reversal symmetry (8 = 1), no analytical result for the
mean of K at given I" is known for N > 2. For larger numbers of channels we
can draw our conclusionsfrom the numerical resultsthat are presentedin Fig. 6.4.
Interestingly enough the data points for N channels are close to the results for
broken time-reversal symmetry with N/2 channels, when the decay rate is given
in units of I'y. Thisisillustrated for N = 8 in Fig. 6.6. Such arule of thumb
(motivated by the number of real degrees of freedom that enter the non-Hermitian
part of H) was aready known for the decay rate distribution (Fig. 6.6, bottom).
Hence the Petermann factor for the lasing mode should also for 8 = 1 display a
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P(I") I
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Figure 6.6: Top: Average Petermann factor (K) for N = 4, 8 = 2 [open circles:
result of a numerical simulation, curve: Eq. (6.48)] and for N =8, g =1 (filled
circles. numerical simulation). The parameter Iy equals NA /27 in both cases,
soitistwiceaslargefor 8 = 2 asfor § = 1. Bottom: Probability distribution of
I’ for N =4, g = 2 [open circles: humerical simulation, curve: Eq. (6.45)] and
for N =8, 8 = 1 (filled circles. numerical simulation).
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Figure 6.7: Numerically computed distribution of the scaled Petermann factor
(K —=1)/I" for N = 10 when time-reserval symmetry is preserved (top) respect-
ively broken (bottom) as a function of I". The points mark the values below
which 10%,20%, ...,90% of all computed data pointslie. Thelines are the aver-
age [computed numerically for 8 = 1, computed analytically from Eq. (6.48) for

B=12.
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sublinear growth with increasing channel number N. This expectation is indeed
confirmed by the numerical simulations, see thefilled circlesin Fig. 6.5.

6.5 Discussion

The Petermann factor K enters the fundamental lower limit of the laser linewidth
due to vacuum fluctuations and is a measure of the non-orthogonality of cav-
ity modes. We related the Petermann factor to the residue of the scattering-matrix
polethat pertainsto the lasing mode and computed statistical propertiesof K inan
ensemble of chaotic cavities. Lasing action selects a mode which has a small de-
cay rate I, and hence belongsto apol e that liesanomalously closeto thereal axis.
For a single scattering channel this simplifies the calculation, yielding a mean
Petermann factor depending non-analytically on the transmission probability T.
On the other hand, for large number N of scattering channels non-perturbative
statistical methods have now to be employed [Fra00, Sch00], resulting in para-
metrically large Petermann factors oc +/N.

The quantity K is aso of fundamental significance in the general theory of
scattering resonances, where it enters the width-to-height relation of resonance
peaks and determines the scattering strength of a quasi-bound state with given
decay rate I". If we write the scattering matrix (6.7) in the form

Sim=8nm+0,0(w—2+ir/2)71, (6.51)

then the scattering strengths o, o, arerelated to I" by asum rule. For resonances
closeto thereal axis (I" « A) therdationis

> logoml?=T17. (6.52)
n,m
For poles deeper in the complex plane, however, the sum rule has to be replaced
by

Y logomlP=Kr?,  Kx>1. (6.53)
n,m

6.A Joint distribution of A and B

We calculate the joint distribution P(A,B) [Eq. (6.36)] of the quantities A
[Eq. (6.32)] and B [Eqg. (6.35)] by generalising the theory of Ref. [Fyo95]. We
give the lasing mode w, the new index M and assume that it lies at the centre
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of the semicircle (6.3), w), = 0. Other choices just renormalise the mean modal
spacing A, which we can set to A = 1. The quantities A and B are then of the
form

ltm]2 — |ozm|2
, B=Y)" : (6.54)
m=1

a)
m=1

Thejoint probability distribution of A and B,

2 M-1 2
[oml )(S(B—Z '“”;' )> (6.55)
Wm ) wm

is obtained by averaging over the variables {|am|%, wm}. The quantities |am|? are
independent numbers with probability distribution (6.20). The joint probability
distribution of the eigenfrequencies {wn} of the closed cavity is the eigenvalue
distribution of the Gaussian ensembles (6.2) of random-matrix theory,

M-1

P(A B) = <8<A— >

m=1

P({a)m})al—lla). w,|ﬂexp< M wﬁ) (6.56)

i<j

Our choice A = 1 trandatesinto u = M /.

The joint probability distribution of the eigenvalues {wm} (M=1,...,M —1)
is found by setting w,, = 0 in Eq. (6.56). It factorises into the eigenvalue distri-
bution of M — 1 dimensional Gaussian matrices H ' [again distributed according
to Eq. (6.2)], and the term ]_[J " Hwil? = |detH'|f.

In the first step of our calculation, we use the Fourier representation of the
s-functionsin Eq. (6.55) and write

co o M-1 %
P(A, B)o<</dx /dyéx“'yB]_[/dlaml P(jem|?)
0 m=17%
e m|2 - Joml?
X exp IXZ iy >y —)) (65D
m=1 m

where the average refers to the variables {wn}. The integrals over |om|? can be
performed, resulting in

2B
P(A, B)oc/dx/dyeiXA+in< detH 2> . (658)
det[H "2+ 2iw(xH’ +y)/x28]"
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where the average is now over the Gaussian ensemble of H’-matrices. It is our
goal to relate this average to autocorrel ators of the secular polynomial of Gaussian
distributed random matrices, givenin Refs. [And95, Ket97].

The determinant in the denominator can be expressed as a Gaussian integral,

P(A, B)oc/dx/dye‘XA*in/dz/dH’detH’zﬁ

:B 2

xexp[ MtrH’2 (H’Z—i—%(xH’—l—y))z}, (6.59)

where the M — 1 dimensional vector zisreal (complex) for 8 = 1 (2). Since our
origina expression did only depend on the eigenvalues of H’, the formulation
above is invariant under orthogonal (unitary) transformations of H’, and we can
choose a basis in which z points into the direction of the last basis vector (index
M — 1). Let us denote the Hamiltonian in the block form

H = <;’T g) . (6.60)

HereV isa(M —2) x (M — 2) matrix, g anumber, and h a(M — 2) dimensional
vector. In this notation,

P(A, B)oc/dx/dyeiXA“yB/dz/dg/dV/dh
x det[VZ#(g—hTv~ 1h)2ﬂ]exp[ pr 2(g +2|h| +trV2)]
xexp[—|zl (g +|h}? + [xg-l—y])] . (6.61)
Theintegralsover x and y give §-functions,
P(A, B)oc/dz/dg/dv/dh det[V?(g—h'vV~th)?]

B’ 2 2 2 2(.2 2
xexp[—m(g +2|h[*+trV?) —[z]*(g°+ | h| )]
x§(A—gB)s (B —2w|z|?/Bn?) . (6.62)
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We then integrate over g and z,

P(A, B)o</dv dh det[ 2ﬂ<B htv - 1h) i|B§(Ml)2

Bm?B [ A
2w \ B2

2
xexp[ pr ——(2lh|?+trv?) — +|h| )} (6.63)
We dready anticipated B >»> 1/M and omitted in the exponent a term
— B2 A2 /AM B2,
The integral over h can be interpreted as an average over Gaussian random
variableswith variance

1 1 w w
=(lhi %) = — ~ 1-— . .64
(hil® = 73 B/w+1/M nZB( MB) (6.64)

For the stochastic interpretation one al so hasto supply the normalisation constants
proportional to

ﬂ(M*Z) _ w ﬂ(M*Z)/Z ,Bw
h = <n2|3> A T) (6:65)
Theintegral over V isanother Gaussian average, and thus
2A2
P(AB) o QB4 2exp| — 2% (14T , (6.664)
2B w?

2B
Qs = <det [vzﬁ (g —h'v ‘1h> D . (6.66h)

After averaging over h, one has now to consider for § =1
2A 4 —-1\2
Q1_<det(v 52 +hV2[(trv Y2 +2trv - ])> (6.67)

where only the even termsin V have been kept. The ratio of coefficientsin this
polynomial in A/B can be calculated from the autocorrelator [Ket97]

(det(V +w)(V +a)’)> _ 3 dsinnx
(detV 2) T m?xdx  mx

Gi(w,0) = (6.68)

/

X=w—o'

of the secular polynomial of Gaussian distributed real matricesV . Thisisachieved
by expressing the products of traces and determinantsthrough secular coefficients,
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and these then as derivatives of the secular determinant,

2 2

(detVv2(trv —1)?) 92 , d T
@eV?) T bedw )| = TppCed) =%
(6.69a)
2(detV2(trv —2)) 82
=— 0 6.69b
(detV2) 82 Gi(o, )wO ( )
[We used the trandlational invariance of G(w,w").] Egs. (6.64) and (6.68) yield
A? w?
Q1 o FYRETYR (6.70)
For B = 2, the average over h yieldsthe expr on
At
Qo X — —|—q1h4 —|—q2h (6.71a)
q1:6<detV [(trv - 1)2+trv— ], (6.71b)
Gz = (detVA[(tr V)~ +6trV 2(trv 1)
+8trvVrv 34 6trvV 4+ 3(trv -3)?)).. (6.71¢)

The coefficients can now be computed from the four-point correlator of the Gaus-
sian unitary ensemble [And95],

(det(V F+w1)(V +w)(V +w3)(V + a)4))

Go(w1,w2,w3,wa) =

(det V)
_ i[ cosT (w1 + wy — w3 — wa)
T 274 | (w1 — w3) (w1 — wa) (w2 — w3) (w2 — ws)

COST (w1 + w3 — w2 — w4)

(w1 — w2)(w1 — w4) (w3 — w2)(w3 — w4)

COST (w1 + w4 — w3 — W2) }
6.72a
(w1 — w3)(w1 — w2) (w4 — w3)(ws — @) ( )
3 .
G2(®,0,0,0) = ﬁ(smrca) — TTw COSTIW) (6.72b)
3
Go(w,w,0,0) = (COSZTra) 14 27%0?) . (6.72¢)
In this case
82
=7 —[6G2(w,,0,0) — 18G2(w,0,0,0)]| = 2n7, (6.733)
w=0
4
o = W[lOGZ(‘”"”’O’ 0) — 15G»(w,0,0,0)]| = =2, (6.73b)
w w=0




6.A. JOINT DISTRIBUTION OF AAND B 105

which gives
Qo Q2. (6.74)

Collecting results we obtain Eq. (6.36), where we also included the normal-
isation constant.
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Quantumoptica van wanordelijke
systemen

Doel van dit proefschrift is de ontwikkeling van een theoretisch raamwerk om
guantumoptica en wanorde te combineren. Beide onderwerpen apart zijn uitvoe-
rig bestudeerd in het verleden, maar de combinatieis nieuw. Laten we deze twee
onderwerpen apart onder de loep nemen.

Quantumopticais op zichzelf een combinatie van twee vakgebieden, de optica
en de quantummechanica. Volgens de quantumopticabestaat het licht uit discrete
“guanta’ van energie, genaamd fotonen. De hoeveelheid energie van een foton is
zo klein dat we meestal het bestaan van fotonen kunnen vergeten en doen a sof
het licht een continue stroom van energieis. Echter, op atomaire schaal speelt de
discreetheid (of quantisatie) van de energie een essentiéle rol, omdat de atomaire
energién zelf ook heel klein zijn. Einsteins theorie van het foto-elektrische effect
(waar hij de Nobelprijs voor ontving) was de eerste quantumoptische theorie. Na
de ontdekking van de laser heeft de quantumoptica zich in de zestiger jaren snel
ontwikkeld tot een rijp vakgebied.

Op macroscopische schaal kunnen we het bestaan van fotonen afleiden uit de
fluctuaties van de energiestroom. Men spreekt van hagelruis, waarbij men de fo-
tonen vergelijkt met hagelkorrels. Een wezenlijk verschil tussen hagel enlicht is
dat hagelkorrels voldoen aan de wetten van de klassieke mechanica, terwijl foto-
nen de wetten van de quantummechanicavolgen. Volgens de quantummechanica
hebben identieke deeltjes een mysterieuze kracht op elkaar, hoe ver ze ook van
elkaar zijn verwijderd. Voor fotonen is die kracht aantrekkend. (Men noemt dit
soort deeltjes bosonen.) Door die aantrekkende kracht is de ruisin een stroom
licht groter dan je voor hagelruis zou verwachten. Deze toenamein deruisis ook
voor het eerst voorspeld door Einstein.

Wanordelijke systemen zijn materialen waarin het licht op een onregelma
tige, chaotische manier wordt verstrooid. Een vertrouwd voorbeeld is matglas.
In matglas zijn opzettelijk verstoringen aangebracht, die het licht alle kanten op
verstrooien. De preciese wijze van verstrooiing door deze strooicentrais onvoor-



116 SAMENVATTING

spelbaar, tenzij je precies zou weten waar de verstoringen zijn aangebracht. Maar
ditis meestal ondoenlijk. Het is zinvoller om een stati sche beschrijving te zoeken,
die de gemiddel de eigenschappen van het matglas geeft in plaats van de specifieke
eigenschappen van één bepaal d stukje glas. Chaotische verstrooiing treedt ook op
in trilholtes die een onregelmatige vorm hebben, zelfs al er zich in de trilholte
geen strooi centra bevinden.

Er bestaat een gedetailleerde statistische theorie voor de chaotische verstrooi-
ing van lichtgolven, gebaseerd op de wiskunde van toevalsmatrices. De matrix
waar het om gaat is de zogenaamde verstrooiingsmatrix. De verstrooiingsmatrix
van een stukje matglasis natuurlijk niet echt toevallig, maar in een statistische be-
schrijving is het toevallig aanwijzen van de matrixelementen een goede aanpak.
Tot op heden speelden fotonen in deze theorie geen rol, men veronderstelde dat de
energie in golven volledig continu kon variéren. Door de quantumoptica met de
toeval smatrixtheorie te combineren hebben we een theorie kunnen ontwikkelen
voor de chaotische verstrooiing van fotonen en zo een aantal interessante nieuwe
problemen kunnen opl ossen.

De inhoud van dit proefschrift bestaat dus enerzijds uit een algemeen theore-
tisch kader en anderzijds uit een aantal toepassingen. Het belangrijkste resultaat
van de algemenetheorieis een relatie tussen de correlatiefuncties van de fluctua-
tiesin het licht en de verstrooiingsmatrix. Een hele eenvoudige toepassing is op
de straling van een zwart lichaam. De verstrooiingsmatrix van een zwart lichaam
isgelijk aan nul, omdat al het invallende licht door een zwart lichaam wordt geab-
sorbeerd en niets wordt teruggestrooid. Een realistisch voorwerp is grijsin plaats
van zwart, dat wil zeggen, de verstrooiingsmatrix is niet precies nul. We geven
een gedetailleerde beschrijving van hoe de fluctuaties voor een grijs lichaam af-
wijken van de ideale limiet van een zwart lichaam.

De afwijking is klein omdat de quantummechanische aantrekkingskracht tus-
sen fotonen zo klein is. Veel grotere effecten treden op in een laser, of meer
in het algemeen in een medium dat het invallende licht versterktterugkaatst, in
plaats van het te absorberen. Een laser met wanorde heet een “toevalslaser” en de
toevalsmatrixtheorieis een krachtig hulpmiddel om de statistische el genschappen
van de versterkte straling te beschrijven.

De straling van een laser is in een zogenaamde “coherente” toestand, met
gereduceerde fluctuaties. Nog lagere fluctuaties kunnen bereikt worden in een
toestand die men “geperst” noemt (squeezedh het engels). De quantummecha
nische aantrekking die fotonen van nature op elkaar hebben is in een geperste
toestand omgezet in een afstoting. Coherente en geperste toestanden zijn kwets-
bare toestanden van het licht; een beetje absorptie zet ze a gauw om in de meer
gewone “thermische” toestand van het licht. Hoe deze omzetting in zijn werk gaat
wordt in dit proefschrift in detail beschreven.
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. Elastische verstrooiing heeft geen invlioed op de fluctuaties van coherente stra-
ling.

Dit proefschrift, hoofdstuk 2.

. De“squeezing” sterktevan “squeezed” stralingin een wanordelijk medium neemt
af op de schaal van de absorptielengte terwijl de “ squeezing” hoek vervalt op de
schaal van de vrije-weglengte.

Dit proefschrift, hoofdstuk 3.

. Voortplanting van coherente straling door een wanordelijke absorberende golf-
pijp leidt tot een toename van de Fanofactor met anderhalf keer de Bose-Einstein
functie.

Dit proefschrift, hoofdstuk 4.

. De Petermannfactor in de quantumoptica van lasers komt overeen met het con-
ditiegetal in de numerieke wiskunde van matrixinversie.
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schens, Brouwer en Beenakker schendt causaliteit.
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. De Campbell-Baker-Hausdorff formule heeft het volgende analogon voor ope-
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